Air quality monitoring systems differ in composition and accuracy of observations and their temporal and spatial coverage. A monitoring system’s performance can be assessed by evaluating the accuracy of the emission sources identified by its data. In the considered inverse modeling approach, a source identification problem is transformed to a quasi-linear operator equation with the sensitivity operator. The sensitivity operator is composed of the sensitivity functions evaluated on the adjoint ensemble members. The members correspond to the measurement data element aggregates. Such ensemble construction allows working in a unified way with heterogeneous measurement data in a single-operator equation. The quasi-linear structure of the resulting operator equation allows both solving and predicting solutions of the inverse problem. Numerical experiments for the Baikal region scenario were carried out to compare different types of inverse problem solution accuracy estimates. In the considered scenario, the projection to the orthogonal complement of the sensitivity operator’s kernel allowed predicting the source identification results with the best accuracy compared to the other estimate types. Our contribution is the development and testing of a sensitivity-operator-based set of tools for analyzing heterogeneous air quality monitoring systems. We propose them for assessing and optimizing observational systems and experiments.
The results of scenario estimation of summer conditions for the formation of atmospheric circulations and transport of pollutants of natural and anthropogenic origin in the Baikal region atmosphere and over the Baikal water area are presented. Possible changes in air quality are studied with a mesoscale nonhydrostatic model of atmospheric dynamics and pollutant transport. The investigation has revealed some meteorological situations that are unfavorable for air quality in the Baikal region and over its water area.
Ветер в нижних слоях атмосферы является непосредственным переносчиком загрязняющих примесей от малых и средних объектов энергетики, находящихся вблизи акватории озера Байкал. Для оценок влияния различных метеорологических ситуаций на процессы переноса примесей на акваторию используется мезомасштабная модель динамики атмосферы и переноса примесей, разрабатываемая в ИВМиМГ СО РАН. Представлены результаты численного моделирования локальных циркуляций в Байкальском регионе в летний период. Показана пространственная и временная изменчивость ветрового потока и динамика распределения примесей в условиях модельного сценария.Ключевые слова: гидротермодинамика и качество атмосферы, математическое моделирование атмосферных процессов, природоохранное прогнозирование.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.