The objective of this paper is to manifest the intellectual and cognitive structure of CORINE Land Cover (CLC) research applications. Data from the Web of Science (WoS) was used to delimit publication on CLC during the period from 1985 until 2019 (29th April), retrieving a total of 873 documents. Through author citations, the origins and the most influential papers were identified. The main lines of research were identified from word co-occurrences extracted from the titles, keywords, and abstracts of the papers. In the view of both structures, it can be concluded that CORINE land cover constitutes a relatively young set of scientific data, with a constant expansion and a strongly interdisciplinary structure. The development of this application is dependent on the knowledge of such research areas as geography, remote sensing, ecology, forestry, agriculture, engineering, optics, and/or computer science. We believe that this information could be very useful for CLC users, as it reflects a large-scale analysis of the research lines of CLC and illuminates how research has changed over time in diverse areas of applications. Moreover, this study is intended to offer a useful tool for the CLC scientific community, showcasing the main research lines and the most noteworthy papers. Finally, the methodology used in this study can be replicated in many other fields of science to explore its intellectual and cognitive structure.
The issue of population dataset reliability is of particular importance when it comes to broadening the understanding of spatial structure, pattern and configuration of humans’ geographical location. The aim of the paper was to estimate the reliability of LandScan based on the official Polish Population Grid. The adopted methodology was based on the change detection approach, spatial pattern and continuity analysis, as well as statistical analysis at the grid-cell level. Our results show that the LandScan data can estimate the Polish population very well. The number of grid cells with equal people counts in both datasets amounts to 10.5%. The most and highly reliable data cover 72% of the country territory, while less reliable ones cover only 4.3%. The LandScan algorithm tends to underestimate people counts, with a total value of 79,735 people (0.21%). The highest underestimation was noticed in densely populated areas as well as in the transition areas between urban and rural, while overestimation was observed in moderately populated regions, along main roads and in city centres. The underestimation results mainly from the spatial pattern and size of Polish rural settlements, namely a big number of shadowed single households dispersed over agricultural areas and in the vicinity of forests. An excessive assessment of the number of people may be a consequence of the well-known blooming effect.
Automatic building extraction from remote sensing data is a hot but challenging research topic for cadastre verification, modernization and updating. Deep learning algorithms are perceived as more promising in overcoming the difficulties of extracting semantic features from complex scenes and large differences in buildings’ appearance. This paper explores the modified fully convolutional network U-Shape Network (U-Net) for high resolution aerial orthoimagery segmentation and dense LiDAR data to extract building outlines automatically. The three-step end-to-end computational procedure allows for automated building extraction with an 89.5% overall accuracy and an 80.7% completeness, which made it very promising for cadastre modernization in Poland. The applied algorithms work well both in densely and poorly built-up areas, typical for peripheral areas of cities, where uncontrolled development had recently been observed. Discussing the possibilities and limitations, the authors also provide some important information that could help local authorities decide on the use of remote sensing data in land administration.
The paper aimed to express the cognitive and intellectual structure of research executed in the field of GIS-based land use change modeling. An exploration of the Web of Science database showed that research in GIS spatial analysis modeling for land use change began in the early 1990s and has continued since then, with a substantial growth in the 21st century. By science mapping methods, particularly co-coupling, co-citation, and citation, as well as bibliometric measures, like impact indices, this study distinguishes the most eminent authors, institutions, countries, and journals in GIS-based land use change modeling. The results showed that GIS-based analysis of land use change modeling is a multi- and interdisciplinary research topic, as reflected in the diversity of WoS research categories, the most productive journals, and the topics analyzed. The highest impact on the world sciences in the field have can be attributed to European Universities, particularly from The Netherlands, Belgium, Switzerland, and Great Britain. However, China and the United States published the highest number of research papers.
Population data are generally provided by state census organisations at the predefi ned census enumeration units. However, these datasets very are often required at userdefi ned spatial units that differ from the census output levels. A number of population estimation techniques have been developed to address these problems. This article is one of those attempts aimed at improving county level population estimates by using spatial disaggregation models with support of buildings characteristic, derived from national topographic database, and average area of a fl at. The experimental gridded population surface was created for Opatów county, sparsely populated rural region located in Central Poland. The method relies on geolocation of population counts in buildings, taking into account the building volume and structural building type and then aggregation the people total in 1 km quadrilateral grid. The overall quality of population distribution surface expressed by the mean of RMSE equals 9 persons, and the MAE equals 0.01. We also discovered that nearly 20% of total county area is unpopulated and 80% of people lived on 33% of the county territory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.