The nonmetabolizable glucose analogue [3H]-2-deoxy-D-glucose (3H-2DG) was used to study glucose transport in cultured rat podocytes. Intracellular accumulation of 3H-2DG was linear up to 20 min and was inhibited by cytochalasin B (80% inhibition) and by phlorizin (20% inhibition). Pretreatment with insulin stimulated the 3H-2DG uptake 1.5-fold. A Hill analysis of the rate of glucose transport yielded a Vmax value of approximately 10 mM and S0.5 of 7.8 mM. The value h = 1.0 for a Hill coefficient confirmed that glucose uptake exhibited a Michaelis-Menten kinetics. Transporters GLUT2 and GLUT4 were expressed in over 90% podocytes. Of the GLUT2- and GLUT4-expressing cells, approximately one-fourth expressed the membrane-bound fraction. We conclude that cultured rat podocytes possess a differentiated glucose transport system consisting chiefly of facilitative GLUT2 and GLUT4 transporters. It seems likely that a sodium-dependent glucose cotransporter may also be present in these cells.
Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.
The presence of a well-developed contractile apparatus is the feature determining major roles of podocytes in the renal glomeruli. Receptors for a variety of vasoactive hormones are expressed in these cells; however, most of the signaling pathways are still unknown and remain to be elucidated. Angiotensin II (Ang II) and atrial natriuretic peptide (ANP), due to their opposite action, are the major modulators of glomerular filtration. In podocytes, Ang II induces rise in intracellular calcium concentration, whereas ANP stimulates generation of cGMP. The present study was designed to check whether ANP-stimulated cGMP synthesis in podocytes might be affected by Ang II. Cultured rat (RP) and mouse (MP) podocytes were stimulated with ANP, in the absence or presence of Ang II and cyclic GMP was determined by RIA method. Co-incubation of podocytes with ANP and Ang II caused significant (p < 0.01) suppression of ANP-dependent cGMP generation. The effect was prevented by saralasin, an inhibitor of angiotensin receptors. Phorbol-12-myristate-13-acetate (PMA) mimicked, whereas chelerythrine reversed inhibitory effect of Ang II. In conclusion, angiotensin II counteracts ANP-stimulated cGMP synthesis in cultured podocytes. It seems likely that the protein kinase C pathway is involved in this effect.
Podocyte injury is associated with progression of many renal diseases, including diabetic nephropathy. In this study we examined whether aldose reductase (AR), the enzyme implicated in diabetic complications in different tissues, is modulated by high glucose and osmolarity in podocyte cells. AR mRNA, protein expression, and activity were measured in mouse podocytes cultured in both normal and high glucose and osmolarity for 6 hours to 5 days. Hyperosmolarity acutely stimulated AR expression and activity, with subsequent increase of AR expression but decrease of activity. High glucose also elevated AR protein level; however, this was not accompanied by respective enzyme activation. Furthermore, high glucose appeared to counteract the osmolarity-dependent activation of AR. In conclusion, in podocytes AR is modulated by high glucose and increased osmolarity in a different manner. Posttranslational events may affect AR activity independent of enzyme protein amount. Activation of AR in podocytes may be implicated in diabetic podocytopathy.
Podocytes may be direct target for glucocorticoid therapy in glomerular proteinuric disease. Permeability of podocytes largely depends on their capacity to migrate which involves the contractile apparatus in their foot processes. In this study, we examined the effect of synthetic glucocorticoid dexamethasone (DEX) on the ability of podocytes to produce cyclic guanosine monophosphate (cGMP) in the presence of vasoactive factors, atrial natriuretic peptide (ANP), nitric oxide (NO), and angiotensin II (Ang II). We investigated also the effects of cGMP and DEX on podocyte motility. Primary rat podocytes and immortalized mouse podocytes were pretreated with 1 µM DEX for 4 or 24 h. Glomerular hypertension was mimicked by subjecting the cells to mechanical stress. Total and subcellular cGMP levels were determined in podocytes incubated with 0.1 µM ANP, 1 µM S-nitroso-N-acetyl penicillamine (SNAP), and 1 µM Ang II. Cell motility was estimated by a wound-healing assay. The ANP-dependent production of cGMP increased after 4 h exposition to DEX, but was attenuated after 24 h. Adversely, a 24-h pretreatment with DEX augmented the NO-dependent cGMP synthesis. Ang II suppressed the ANP-dependent cGMP production and the effect was enhanced by DEX in mechanical stress conditions. Mechanical stress reduced total cGMP production in the presence of all stimulators, whereas extracellular to total cGMP ratio increased. 8-Br cGMP enhanced podocyte migration which was accompanied by F-actin disassembly. In the presence of DEX these effects were prevented. We conclude that DEX modulates the production of cGMP in podocytes stimulated with vasoactive factors such as Ang II, ANP, and NO, and the effect is time-dependent. cGMP increases podocyte motility, which is prevented by DEX. This mechanism may account for the antiproteinuric effect of glucocorticoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.