Chromogranin A, despite a number of limitations, is still the most valuable marker of neuroendocrine tumors (NETs). Granins belong to the family of acidic proteins that constitute a major component of secretory granules of various endocrine and neuroendocrine cells, which are components of both the classical endocrine glands and the diffuse neuroendocrine system. These cells are a potential source of transformation into neuroendocrine tumors. The awareness of potential causes influencing the false results of its concentrations simplifies diagnosis and treatment. One of the disadvantages of this marker is its non-specificity and the existence of a number of pathological processes leading to an increase in its concentration, which often results in confusion and diagnostic difficulties. The molecular structure is characterized by a number of sites susceptible to the proteolytic activity of enzymes, resulting in the formation of a number of biologically active peptides. Presumably they act as precursors of active proteins. Chromogranin expression correlates with the amount of secretory vesicles in neuroendocrine cells. The peptide chain during biochemical changes becomes a precursor of biologically active proteins with a wide range of activities. There are a number of commercially available kits for the determination of chromogranin A, which differ in methodology. We present the evaluation of chromogranin A as a marker of neuroendocrine tumors in clinical practice and the possible factors that may affect the outcome of its concentration.
Neuroendocrine tumours may be associated with familial syndromes. At least eight inherited syndromes predisposing to endocrine neoplasia have been identified. Two of these are considered to be major factors predisposing to benign and malignant endocrine tumours, designated multiple endocrine neoplasia type 1 and type 2 (MEN1 and MEN2). Five other autosomal dominant diseases show more heterogeneous clinical patterns, such as the Carney complex, hyperparathyroidism-jaw tumour syndrome, Von Hippel-Lindau syndrome (VHL), neurofibromatosis type 1 (NF1) and tuberous sclerosis. The molecular and cellular interactions underlying the development of most endocrine cells and related organs represent one of the more complex pathways not yet to be deciphered. Almost all endocrine cells are derived from the endoderm and neuroectoderm. It is suggested that within the first few weeks of human development there are complex interactions between, firstly, the major genes involved in the initiation of progenitor-cell differentiation, secondly, factors secreted by the surrounding mesenchyme, and thirdly, a series of genes controlling cell differentiation, proliferation and migration. Together these represent a formula for the harmonious development of endocrine glands and tissue.
Gastroenteropancreatic neuroendocrine tumors (GEP/NET) are unusual and rare neoplasms that present many clinical challenges. They characteristically synthesize store and secrete a variety of peptides and neuroamines which can lead to the development of distinct clinical syndrome, however many are clinically silent until late presentation with mass effects. Management strategies include surgery cure and cytoreduction with the use of somatostatin analogues. Somatostatin have a broad range of biological actions that include inhibition of exocrine and endocrine secretions, gut motility, cell proliferation, cell survival and angiogenesis. Five somatostatin receptors (SSTR1-SSTR5) have been cloned and characterized. Somatostatin analogues include octreotide and lanreotide are effective medical tools in the treatment and present selectivity for SSTR2 and SSTR5. During treatment is seen disapperance of flushing, normalization of bowel movements and reduction of serotonin and 5-hydroxyindole acetic acid (5-HIAA) secretion. Telotristat represents a novel approach by specifically inhibiting serotonin synthesis and as such, is a promising potential new treatment for patients with carcinoid syndrome. To pancreatic functionig neuroendocrine tumors belongs insulinoma, gastrinoma, glucagonoma and VIP-oma. Medical management in patients with insulinoma include diazoxide which suppresses insulin release. Also mTOR inhibitors may inhibit insulin secretion. Treatment of gastrinoma include both proton pump inhibitors (PPIs) and histamine H2 – receptor antagonists. In patients with glucagonomas hyperglycaemia can be controlled using insulin and oral blood glucose lowering drugs. In malignant glucagonomas smatostatin analogues are effective in controlling necrolytic migratory erythemia. Severe cases of the VIP-oma syndrome require supplementation of fluid losses. Octreotide reduce tumoral VIP secretion and control secretory diarrhoea.
Introduction: Irisin, a cleaved and secreted part of the transmembrane protein FNDC5, is a recently discovered adipo-myokine that is said to have a significant influence on body metabolism. Changes in thyrometabolic state may also alter the serum irisin level. Since already reported data are not fully consistent, the aim of the present research is to evaluate the time-dependent changes in serum irisin level in patients affected by overt hypothyroidism. Material and methods:The study involved 36 subjects -two groups of 12 patients with long-lasting (AITD) and short-term (TC) overt hypothyroidism, and a control group (CG) of 12 subjects, matched for age and gender. Serum irisin level, thyrometabolic state, creatine kinase (CK -muscle damage marker), glucose, and insulin concentration were assessed and compared between groups. Results: The irisin level was significantly lower in AITD than in TC and CG (p = 0.02; p < 0.01; respectively) patients, with no statistical difference between TC and CG (p > 0.05). There was no significant difference between free triiodothyronine and free thyroxine levels in AITD and TC patients (p > 0.05). CK concentration was significantly higher in AITD than in CG patients (p < 0.01) with no difference between AITD and TC patients (p > 0.05) as well as TC and CG patients (p > 0.05). Additionally, the CK level negatively correlated with the irisin level (r = -0.58; p < 0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.