Demand for data security is increasing as information technology advances. Encryption technology based on biometrics has advanced significantly to meet more convenient and secure needs. Because of the stability of face traits and the difficulty of counterfeiting, the iris method has become an essential research object in data security research. This study proposes a revolutionary face feature encryption technique that combines picture optimization with cryptography and deep learning (DL) architectures. To improve the security of the key, an optical chaotic map is employed to manage the initial standards of the 5D conservative chaotic method. A safe Crypto General Adversarial neural network and chaotic optical map are provided to finish the course of encrypting and decrypting facial images. The target field is used as a "hidden factor" in the machine learning (ML) method in the encryption method. An encrypted image is recovered to a unique image using a modernization network to achieve picture decryption. A region-of-interest (ROI) network is provided to extract involved items from encrypted images to make data mining easier in a privacy-protected setting. This study’s findings reveal that the recommended implementation provides significantly improved security without sacrificing image quality. Experimental results show that the proposed model outperforms the existing models in terms of PSNR of 92%, RMSE of 85%, SSIM of 68%, MAP of 52%, and encryption speed of 88%.
.Effective Bayesian network structure learning algorithms, such as the Peter and Clark (PC) algorithm, must be designed and used with data integrity as a top priority. Deep learning models can be jointly built by thousands of participants; thanks to the innovative distributed learning technology known as federated learning. This research proposes a technique for the detection of data poisoning attacks along with enhancing secure data transmission and routing by utilizing the integration of the PC algorithm and federated learning. Data integrity of the network is likewise enhanced using the Convergence of the PC algorithm. Detection of attacks in established secure data transmission is carried out using Bayesian adversarial federated learning. We provided an optimization-based model poisoning approach and introduced adversarial neurons into the redundant area of a neural network by assessing model capacity. It should be highlighted that while those redundant neurons have little relevance to the primary goal of federated learning, they are crucial for poisoning attacks. Numerical tests show that the suggested approach can get beyond defense mechanisms and have a high attack success rate.
In this paper, a framework for simultaneous tracking and recognizing drone targets using a low-cost and small-sized millimeter-wave radar is presented. The radar collects the reflected signals of multiple targets in the field of view including drone and non-drone targets. The analysis of the received signals allows multiple targets to be distinguished because of the different reflection patterns. The proposed framework consists of four processes including signal processing, cloud points clustering, target tracking, and target recognition. Signal processing translates the raw signals into spare cloud points. These points are merged into several clusters, each representing a single target. Target tracking estimates the new locations of each detected target. A novel convolutional neural network model is developed for drone and/or non-drone targets feature extraction and recognition. For performance evaluation, a dataset collected with an IWR6843ISK mmWave sensor by Texas Instruments is used for training and testing the convolutional neural network. The proposed recognition model achieves an accuracy of 98.4% for one target and 98.1% for two targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.