Background The concept of magnetized water and the historically abbreviated glimpse were discussed. Therefore, the magnetic water treatment method has been summed up and considered a better and cleaner physical technique for water handling. This experimental work is focused on the effect of magnetic treatment on certain water parameters such as temperature, electrical conductivity (EC), total dissolved salts (TDS), and pH by exposing water to a permanent magnetic field (PMF) with a magnetic flux density (B = 1.45 T ± 0.05). Results This technique is realized by using a fixed system that depends on the application of both pump and valve control to induce the required circulation of employed water. Both open loop and closed loop are applied as a function of exposure time. Considering that the type of used water is brackish groundwater. The results showed that at open and closed flow conditions, the PMF causes variations in the values of the measured parameters for the outflow water. The theoretical approach is subjected to measure the molecular interaction of water system H-bonded systems based on DFT level with function B3LYP on Gaussian 09 software with a specific concentration of NaCl. This research focuses on the relation between the molecular structure of water and the dissolved NaCl with respect to applying a magnetic field with a varying force from 1 to 85 T. Conclusion The water's magnetization technique is simple without using extra energy by using a PWT tool to create a permanent magnetic field (B = 1.45 T ± 0.05) when installing it on a water tube system that was previously mounted. This environmentally friendly, renewable technology, therefore, does not need any additional energy requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.