Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models’ interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions.AvailabilityThe datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.
The need for graduates who are immediately prepared for employment has been widely advocated over the last decade to narrow the notorious gap between industry and higher education. Current instructional methods in formal higher education claim to deliver career-ready graduates, yet industry managers argue their imminent workforce needs are not completely met. From the candidates view, formal academic path is well defined through standard curricula, but their career path and supporting professional competencies are not confidently asserted. In this paper, we adopt a data analytics approach combined with contemporary social computing techniques to measure, instil, and track the development of professional competences of learners in higher education. We propose to augment higher-education systems with a virtual learning environment made-up of three major successive layers: (1) career readiness, to assert general professional dispositions, (2) career prediction to identify and nurture confidence in a targeted domain of employment, and (3) a career development process to raise the skills that are relevant to the predicted profession. We analyze self-declared career readiness data as well as standard individual learner profiles which include career interests and domain-related qualifications. Using these combinations of data sources, we categorize learners into Communities of Practice (CoPs), within which learners thrive collaboratively to build further their career readiness and assert their professional confidence. Towards these perspectives, we use a judicious clustering algorithm that utilizes a fuzzy-logic objective function which addresses issues pertaining to overlapping domains of career interests. Our proposed Fuzzy Pairwise-constraints K-Means (FCKM) algorithm is validated empirically using a two-dimensional synthetic dataset. The experimental results show improved performance of our clustering approach compared to baseline methods.
approach leads to a persuasive model that supports behavioral changes and developments. The performance results obtained from both analytical and experimental evaluations validate our data-driven strategy for persuasive behavioral change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.