Enterobacter cloacae was originally isolated from soil irrigated with wastewater on the basis of its ability to grow with linear alkylbenzene sulfonate (LAS) as the sole source for carbon and energy. The isolated bacterium was grown in batch cultures using a 2-chlorobenzoic acid (2-CBA)-containing minimal salt medium (MSM). 2-CBA was found to be the sole source for carbon and energy. 2-CBA inhibited the growth rate with a maximum concentration of 10 mM, after which no growth occurred. The Haldane model was used to predict the specific growth rate concentration data. 2-CBA degradation by starved E. cloaca cells was faster than that of nonstarved cells. The maximum growth rates on 2-CBA (2 mM) for starved and nonstarved cells reached only 0.34 and 0.28 h ¡1 , respectively. Glucose, lactose, sucrose, maltose, succinic acid, and mannitol as additional carbon sources at a fixed concentration (0.2%) caused the degradation rate of 2-CBA to proceed faster at ranges between 1.08-and 1.5-fold higher than that of the control. In contrast, using only fructose and sorbitol as the carbon sources showed catabolic repression of the degradation activity of 2-CBA by E. cloaca cells, although their cell mass was improved. All nitrogen sources supplied caused an increase in cell mass, whereas only lysine, alanine, glutamine, casein, and yeast extract caused a decrease in the degradation rate of 2-CBA, with a range between 12% and 28%. The activity of C120 could be detected in a crude extract of E. cloacae cells, indicating that the chloroaromatic ring fission occurs through the ortho pathways, not through the meta pathways. The data showed that different initial cell (inocula) densities did not affect the induction time for 2-CBA degradation. However, doubling the initial cell densities reduced the time required for reaching the complete degradation. 2-CBA degradation was optimally achieved at a 37 C incubation temperature and a pH of 7.5.
A 19.5-year-old patient after Mustard operation was found to have baffle leaks and obstruction. This patient underwent successful device closure of the leaks using the Amplatzer device and stent implantation with complete resolution of the symptoms. Cathet Cardiovasc Intervent 2001;54:72-76.
Sodium dodecyl sulfate-polyacrlyamide gel electrophoresis (SDS-PAGE) was used to assess the purity and molecular weight of the previously purified alkaline keratinase enzyme of Scopulariopsis brevicaulis. The enzyme was homogenous, as seen by a single band of protein, and had an apparent molecular weight of 28.5 kDa. Amino acid profile of the purified keratinase revealed that it was composed of 14 different amino acids with high proportions of glutamic acid (20.86%), alanine (14.52%), glycine (14.21%), leucine (8.59%) and serine (7.81%). The enzyme contained moderate amounts of valine (6.01%), threonine (5.58%) and phenyl alanine (5.22%). The purified enzyme of S. brevicaulis exerted a potent keratinolytic activity and was capable to hydrolyze different keratinaceous materials with highest activity on chicken feathers followed by human nails and human hair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.