In recent years, robotic sorting is widely used in the industry, which is driven by necessity and opportunity. In this paper, a novel neuromorphic vision-based tactile sensing approach for robotic sorting application is proposed. This approach has low latency and low power consumption when compared to conventional vision-based tactile sensing techniques. Two Machine Learning (ML) methods, namely, Support Vector Machine (SVM) and Dynamic Time Warping-K Nearest Neighbor (DTW-KNN), are developed to classify material hardness, object size, and grasping force. An Event-Based Object Grasping (EBOG) experimental setup is developed to acquire datasets, where 243 experiments are produced to train the proposed classifiers. Based on predictions of the classifiers, objects can be automatically sorted. If the prediction accuracy is below a certain threshold, the gripper re-adjusts and re-grasps until reaching a proper grasp. The proposed ML method achieves good prediction accuracy, which shows the effectiveness and the applicability of the proposed approach. The experimental results show that the developed SVM model outperforms the DTW-KNN model in term of accuracy and efficiency for real time contact-level classification.
Content addressable memory (CAM) for search and match operations demands high speed and low power for near real-time decision-making across many critical domains. Resistive RAM (RRAM)-based in-memory computing has high potential in realizing an efficient static CAM for artificial intelligence tasks, especially on resource-constrained platforms. This paper presents an XNOR-based RRAM-CAM with a time-domain analog adder for efficient winning class computation. The CAM compares two operands, one voltage and the second one resistance, and outputs a voltage proportional to the similarity between the input query and the pre-stored patterns. Processing the summation of the output similarity voltages in the time-domain helps avoid voltage saturation, variation, and noise dominating the analog voltage-based computing. After that, to determine the winning class among the multiple classes, a digital realization is utilized to consider the class with the longest pulse width as the winning class. As a demonstrator, hyperdimensional computing for efficient MNIST classification is considered. The proposed design uses 65 nm CMOS foundry technology and realistic data for RRAM with total area of 0.0077 mm2, consumes 13.6 pJ of energy per 1 k query within 10 ns clock cycle. It shows a reduction of ~ 31 × in area and ~ 3 × in energy consumption compared to fully digital ASIC implementation using 65 nm foundry technology. The proposed design exhibits a remarkable reduction in area and energy compared to two of the state-of-the-art RRAM designs.
Content addressable memory (CAM) for search and match operations demands high speed and low power for near real-time decision-making across many critical domains. Resistive RAM-based in-memory computing has high potential in realizing an efficient static CAM for artificial intelligence tasks, especially on resource-constrained platforms. This paper presents an XNOR-based RRAM-CAM with a time-domain analog adder for efficient winning class computation. The CAM compares two operands, one voltage and the second one resistance, and outputs a voltage proportional to the similarity between the input query and the pre-stored patterns. Processing the summation of the output similarity voltages in the time-domain helps avoid voltage saturation, variation, and noise dominating the analog voltage-based computing. After that, to determine the winning class among the multiple classes, a digital realization is utilized to consider the class with the longest pulse width as the winning class. As a demonstrator, hyperdimensional computing for efficient MNIST classification is considered.The proposed design uses 65nm CMOS foundry technology and realistic data for RRAM with total area of 0.0077 mm2 , consumes 13.6 pJ of energy per 1k query within 10 ns clock cycle for 10 classes. It shows a reduction of ∼ 31× in area and ∼ 3× in energy consumption compared to fully digital ASIC implementation using 65nm foundry technology. The proposed design exhibits a remarkable reduction in area and energy compared to two of the state-of-the-art RRAM designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.