This work reports a high-performance, low-cost, biocompatible triboelectric nanogenerator (TENG) using chicken skin (CS). The device is suitable to power wearable devices, which is critical to adapt electronics in monitoring, predicting, and treating people. It also supports sustainability by providing a cost-effective way to reduce the poultry industry's waste. It has been shown here that CS-derived biowaste is an effective means of generating tribopositive material for TENGs. The CS contains amino acid functional groups based on (Glycine, Proline, and Hydroxyproline), which are essential to demonstrate the electron-donating ability of collagen. The skin was cut into 3 × 3 cm2 and used as the raw material for fabricating the TENG device with a stacking sequence of Al/Kapton/spacing/CS/Al. The chicken skin-based TENG (CS-TENG) is characterized at different frequencies (4–14 HZ) using a damping system. The CS-TENG produces an open-circuit voltage of 123 V, short-circuit current of 20 µA and 0.2 mW/cm2 of a power density at 20 MΩ. The biocompatible CS-TENG presents ultra-robust and stable endurance performance with more than 52,000 cycles. The CS-TENG is impressively capable of scavenging energy to light up to 55 commercial light-emitting diodes (LEDs), a calculator, and to measure the physiological motions of the human body. CS-TENG is a step toward sustainable, battery-less devices or augmented energy sources, especially when using traditional power sources, such as in wearable devices, remote locations, or mobile applications is not practical or cost-effective.
Background: Cyanide is an immensely poisonous chemical that is exceedingly noxious to the human body. Methods: Considering this issue, we present a Rectangular core photonic crystal fiber (RPCF) to detect the cyanide. Zeonex is chosen as base material and the investigation is accomplished in the terahertz (THz) frequency region. Results: RPCF model proffers high sensitivity, enlarged effective area, and insignificant confinement loss. Conclusion: It is very worthy to note that the proposed model structure can be fabricated by applying the existing fabrication techniques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.