There are many applications that are incorporating a human appearance and intending to simulate human dialog, but in most of the cases the knowledge of the conversational bot is stored in a database created by a human experts. However, very few researches have investigated the idea of creating a chat-bot with an artificial character and personality starting from web pages or plain text about a certain person. This paper describes an approach to the idea of identifying the most important facts in texts describing the life (including the personality) of an historical figure for building a conversational agent that could be used in middle-school CSCL scenarios.
We address an essential problem in computer vision, that of unsupervised object segmentation in video, where a main object of interest in a video sequence should be automatically separated from its background. An efficient solution to this task would enable large-scale video interpretation at a high semantic level in the absence of the costly manually labeled ground truth. We propose an efficient unsupervised method for generating foreground object soft-segmentation masks based on automatic selection and learning from highly probable positive features. We show that such features can be selected efficiently by taking into consideration the spatio-temporal, appearance and motion consistency of the object during the whole observed sequence. We also emphasize the role of the contrasting properties between the foreground object and its background. Our model is created in two stages: we start from pixel level analysis, on top of which we add a regression model trained on a descriptor that considers information over groups of pixels and is both discriminative and invariant to many changes that the object undergoes throughout the video. We also present theoretical properties of our unsupervised learning method, that under some mild constraints is guaranteed to learn a correct discriminative classifier even in the unsupervised case. Our method achieves competitive and even state of the art results on the challenging Youtube-Objects and SegTrack datasets, while being at least one order of magnitude faster than the competition. We believe that the competitive performance of our method in practice, along with its theoretical properties, constitute an important step towards solving unsupervised discovery in video.
Abstract. Activity recognition is an important component for the ambient assisted living systems which perform home monitoring and assistance for elderly people or patients with risk factors. This paper presents a prototype system for activity recognition using information provided by four Kinects. First the posture of the supervised person is detected using a set of rules created with ID3 algorithm applied to a skeleton obtained by merging the skeletons provided by multiple Kinects. At the same time, the interaction of the user with the objects from the house is determined. After that, daily activities are identified using Hidden Markov Models in which the detected postures and the object interactions are observable states. The benefit of merging the information received from multiple Kinects together with the detection of the interaction between the user and relevant objects from the room is the increase in accuracy for the recognized activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.