Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi, and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization.
Tropical protozoal infections are
a significant cause of morbidity
and mortality worldwide; four in particular (human African trypanosomiasis
(HAT), Chagas disease, cutaneous leishmaniasis, and malaria) have
an estimated combined burden of over 87 million disability-adjusted
life years. New drugs are needed for each of these diseases. Building
on the previous identification of NEU-617 (1) as a potent
and nontoxic inhibitor of proliferation for the HAT pathogen (Trypanosoma brucei), we have now tested this class of analogs
against other protozoal species: T. cruzi (Chagas
disease), Leishmania major (cutaneous leishmaniasis),
and Plasmodium falciparum (malaria). Based on hits
identified in this screening campaign, we describe the preparation
of several replacements for the quinazoline scaffold and report these
inhibitors’ biological activities against these parasites.
In doing this, we have identified several potent proliferation inhibitors
for each pathogen, such as 4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)-6-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)quinoline-3-carbonitrile
(NEU-924, 83) for T. cruzi and N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-7-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)cinnolin-4-amine
(NEU-1017, 68) for L. major and P. falciparum.
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.