ConspectusWhile the use of visible light to drive chemical reactivity is of high importance to the development of environmentally benign chemical transformations, the concomitant use of a stoichiometric electron donor or acceptor is often required to steer the desired redox behavior of these systems. The low-cost and ubiquity of tertiary amine bases has led to their widespread use as reductive additives in photoredox catalysis. Early use of trialkylamines in this context was focused on their role as reductive excited state quenchers of the photocatalyst, which in turn provides a more highly reducing catalytic intermediate.In this Account, we discuss some of the observations and thought processes that have led from our use of amines as reductive additives to their use as complex substrates and intermediates for natural product synthesis. Early attempts by our group to construct key carbon–carbon bonds via free-radical intermediates led to the observation that some trialkylamines readily behave as efficient hydrogen atom donors under redox-active photochemical conditions. In the wake of in-depth mechanistic studies published in the 1970s, 1980s and 1990s, this understanding has in turn allowed for a systematic approach to the design of a number of photochemical methodologies through rational tuning of the amine component. Minimization of the C–H donicity of the amine additive was found to promote desired C–C bond formation in a number of contexts, and subsequent elucidation of the amine’s redox fate has sparked a reevaluation of the amine’s role from that of reagent to that of substrate.The reactivity of tertiary amines in these photochemical systems is complex, and allows for a number of mechanistic possibilities that are not necessarily mutually exclusive. A variety of combinations of single-electron oxidation, C–H abstraction, deprotonation, and β-scission result in the formation of reactive intermediates such as α-amino radicals and iminium ions. These processes have been explored in depth in the photochemical literature and have resulted in a firm mechanistic grasp of the behavior of amine radical cations in fundamental systems. Harnessing the synthetic potential of these transient species represents an ongoing challenge for the controlled functionalization of amine substrates, because these mechanistic possibilities may result in undesired byproduct formation or substrate decomposition. The presence of tertiary amines in numerous alkaloids, pharmaceuticals, and agrochemicals lends credence to the potential utility of this chemistry in natural product synthesis, and herein we will discuss how these transformations might be controlled for synthetic purposes.
The large number of reagents which have been developed for the synthesis of trifluoromethylated compounds is a testament to the importance of the CF3 group as well as the associated synthetic challenge. Current state-of-the-art reagents for appending the CF3 functionality directly are highly effective; however, their use on preparative scale has minimal precedent, because they require multi-step synthesis for their preparation, and/or are prohibitively expensive for large scale application. For a scalable trifluoromethylation methodology, trifluoroacetic acid and its anhydride represent an attractive solution in terms of cost and availability; however, due to the exceedingly high oxidation potential of trifluoroacetate, previous endeavors to use this material as a CF3 source have required the use of highly forcing conditions. Here we report a strategy for the use of trifluoroacetic anhydride for a scalable and operationally simple trifluoromethylation reaction using pyridine N-oxide and photoredox catalysis to effect a facile decarboxylation to the CF3 radical.
SUMMARY The direct trifluoromethylation of (hetero)arenes is a process of high importance to the pharmaceutical industry. Many reagents exist for this purpose and have found widespread use in discovery efforts; however, the step-intensive preparation of these reagents and their corresponding cost have resulted in minimal use of these methods in large-scale applications. For the ready transition of direct trifluoromethylation methodologies to large-scale application, the further development of processes utilizing inexpensive CF3 sources available on a metric ton scale is highly desirable. We report the use of pyridine N-oxide derivatives in concert with trifluoroacetic anhydride to promote a high-yielding and scalable trifluoromethylation reaction. Key mechanistic insights include the observation of electron donor-acceptor complexes in solution as well as a high dependence on photon flux. These observations have culminated in the application of this chemistry on a kilogram scale, demonstrating the utility of this reagent combination for preparative applications.
Natural product modification with photoredox catalysis allows for mild, chemoselective access to a wide array of related structures in complex areas of chemical space, providing the possibility for novel structural motifs as well as useful quantities of less abundant congeners. While amine additives have been used extensively as stoichiometric electron donors for photocatalysis, the controlled modification of amine substrates through single-electron oxidation is ideal for the synthesis and modification of alkaloids. Here, we report the conversion of the amine (+)-catharanthine into the natural products (−)-pseudotabersonine, (−)-pseudovincadifformine, and (+)-coronaridine utilizing visible light photoredox catalysis.
Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi, and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.