The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.
Yurdakul N.E., Erginkaya Z., Ünal E. (2013): Antibiotic resistance of enterococci, coagulase negative staphylococci and Staphylococcus aureus isolated from chicken meat. Czech J. Food Sci., 31: 14-19.We determined the antibiotic resistance of enterococci, coagulase negative staphylococci, and Staphylococcus aureus isolated from chicken meat samples. The antibiotic resistance of the isolated strains was estimated by the KirbyBauer disk diffusion method (according to the NCCLS document M2-A9 suggestions). It was found that all strains of Enterococcus spp. were resistant to tetracycline, 75% of them were resistant to ciprofloxacin, and 50% of them were resistant to erythromycin, vancomycin, and chloramphenicol. Also all strains of S. aureus were resistant to tetracycline and 25% of S. aureus strains were resistant to erythromycin and chloramphenicol, whereas all strains of S. aureus were sensitive to teicoplanin and 25% of them were sensitive to vancomycin and ciprofloxacin. As for the isolate of coagulase negative staphylococci (CNS), 68.1% of them were resistant to erythromycin, 77.2% of them were resistant to tetracycline, 59% of them were resistant to vancomycin, 9% of them were resistant to teicoplanin, and 27.2% of them were resistant to both chloramphenicol and ciprofloxacin. As a result, it was found that most of the strains (all of S. aureus and Enterococcus spp., also 77.2% CNS) were resistant to tetracycline.
The present study was aimed to investigate the genetic diversity among 17 Turkish water buffalo populations. A total of 837 individuals from 17 provincial populations were genotyped, using 20 microsatellites markers. The microsatellite markers analyzed were highly polymorphic with a mean number of alleles of (7.28) ranging from 6 (ILSTS005) to 17 (ETH003). The mean observed and expected heterozygosity values across all polymorphic loci in all studied buffalo populations were 0.61 and 0.70, respectively. Observed heterozygosity varied from 0.55 (Bursa (BUR)) to 0.70 (Muş (MUS)). It was lower than expected heterozygosity in most of the populations indicating a deviation from Hardy–Weinberg equilibrium. The overall value for the polymorphic information content of noted microsatellite loci was 0.655, indicating their suitability for genetic diversity analysis in buffalo. The mean FIS value was 0.091 and all loci were observed significantly deviated from Hardy–Weinberg Equilibrium (HWE), most likely based on non-random breeding. The 17 buffalo populations were genetically less diverse as indicated by a small mean FST value (0.032 ± 0.018). The analysis of molecular variance (AMOVA) analysis indicated that about 2% of the total genetic diversity was clarified by population distinctions and 88 percent corresponded to differences among individuals. The information produced by this study can be used to establish a base of national conservation and breeding strategy of water buffalo population in Turkey.
In this study, to analyze the mtDNA D-loop region and the origin of the maternal lineages of 16 different donkey populations, and to assess the domestication of Turkish indigenous donkeys in seven geographical regions, we investigated the DNA sequences of the D-loop region of 315 indigenous donkeys from Turkey. A total of 54 haplotypes, resulting from 35 polymorphic regions (27 parsimoniously informative and 6 singleton sites), were defined. Twenty-eight of these haplotypes are unique (51.85%), and 26 are shared among different Turkish indigenous donkey populations. The most frequent haplotype was Hap 1 (45.71%), followed by two haplotypes (Hap 4, 15.55% and Hap 7, 5.39%). The breed genetic diversity, evaluated by the haplotype diversity (HD) and nucleotide diversity (πD), for the Turkish donkey populations ranged from 0.533 ± 0.180 (Tekirdağ–Malkara, MAL) to 0.933 ± 0.122 (Aydin, AYD), and from 0.01196 ± 0.0026 (Antalya, ANT) to 0.02101 ± 0.0041 (Aydin, AYD), respectively. We observed moderate-to-high levels of haplotype diversity and moderate nucleotide diversity, indicating plentiful genetic diversity in all of the Turkish indigenous donkey populations. Phylogenetic analysis (NJT) and median-joining network analysis established that all haplotypes were distinctly grouped into two major haplogroups. The results of AMOVA analyses, based on geographic structuring of Turkish native donkey populations, highlighted that the majority of the observed variance is due to differences among samples within populations. The observed differences between groups were found to be statistically significant. Comparison among Turkish indigenous donkey mtDNA D-loop regions and haplotypes, and different countries’ donkey breeds and wild asses, identified two clades and which is named Somali (Clade IV) and Nubian (Clade V) lineages. The results can be used to understand the origin of Turkish donkey populations clearly, and to resolve the phylogenetic relationship among all of the different regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.