International audienceChemically-prepared gold nanoparticles (AuNPs) were drop-casted onto bare glassy carbon (GC) and on GC functionalized by two different diazonium salts bearing either nitro (NO2) or thiol (SH) groups. The resulting interfaces were characterized by field emission gun scanning electron microscopy (FEG-SEM) and cyclic voltammetry in H2SO4. The micrographs evidenced different densities of AuNPs depending on the substrate, bare GC affording denser deposits than diazonium-functionalized GC. The stability of the interfaces was evaluated over one month and showed higher recovery of active surface area (up to 91% depending on the storage conditions) for AuNPs deposited on diazonium-functionalized GC than on bare GC. The three electrodes were also tested for Hg(II) trace detection by using Square Wave Anodic Stripping Voltammetry (SWASV) and a preconcentration time shortened from 300 s to 30 s. In such conditions, a linear response was obtained in the range 1-10 nmol l-1 together with a normalized sensitivity up to 17 times higher than that reported in our previous works dealing with electrodeposited AuNP
An electrochemical sensor dedicated to Hg(II) trace detection was elaborated based on a gold nanoparticles (AuNPs) modified glassy carbon (GC) electrode. AuNPs were prepared using the Turkevich method and deposited on GC by drop casting. Different protocols including suspension filtration and evaporation temperature control were tested and their influence both on coating morphology and electrochemical activity assessed. From structural characterization, it can be concluded that neither the filtration step nor the drop evaporating temperature have a significant impact on coating morphology at the mesoscale level. However, regarding to the electrochemical activity of the functionalized electrodes, results showed that when some heterogeneities due to (AuNPs) aggregation were present in the coating, the electrochemical activity was reduced. Contrary to what was observed in our previous studies dealing with electrodeposited AuNPs, cycling an AuNPs-GC electrode in H 2 SO 4 lead in all cases to a decrease in active surface area and in a higher density of surface defects, thus revealing a higher surface reactivity of chemically-synthesized AuNPs. The electrochemical activation procedure was found to influence the analytical performances of the functionalized electrode with respect to Hg(II) assay in the picomolar range, but not in the nanomolar range, as a consequence of a saturated concentration effect. A linear concentration range was obtained between 2 and 12 pM with a normalized sensitivity of 0.296 µA pM -1 min -1 using square wave anodic stripping voltammetry (SWASV) as the detection mode. A limit of detection (LOD) down to 1 pM was reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.