Substrate-integrated waveguide (SIW) is a modern day (21st century) transmission line that has recently been developed. This technology has introduced new possibilities to the design of efficient circuits and components operating in the radio frequency (RF) and microwave frequency spectrum. Microstrip components are very good for low frequency applications but are ineffective at extreme frequencies, and involve rigorous fabrication concessions in the implementation of RF, microwave, and millimeter-wave components. This is due to wavelengths being short at higher frequencies. Waveguide devices, on the other hand, are ideal for higher frequency systems, but are very costly, hard to fabricate, and challenging to integrate with planar components in the neighborhood. SIW connects the gap that existed between conventional air-filled rectangular waveguide and planar transmission line technologies including the microstrip. This study explores the current advancements and new opportunities in SIW implementation of RF and microwave devices including filters, multiplexers (diplexers and triplexers), power dividers/combiners, antennas, and sensors for modern communication systems.
Owing to recent technological advancement, computers and other devices running several image editing applications can be further exploited for digital image processing operations. This paper evaluates various image processing techniques using matrix laboratory (MATLAB-based analytics). Compared to the conventional techniques, MATLAB gives several advantages for image processing. MATLAB-based technique provides easy debugging with extensive data analysis and visualization, easy implementation and algorithmic-testing without recompilation. Besides, MATLAB's computational codes can be enhanced and exploited to process and create simulations of both still and video images. Moreover, MATLAB codes are much concise compared to C++, thus making it easier for perusing and troubleshooting. MATLAB can handle errors prior to execution by proposing various ways to make the codes faster. The proposed technique enables advanced image processing operations such as image cropping/resizing, image denoising, blur removal, and image sharpening. The study aims at providing readers with the most recent MATLAB-based image processing application-tools. We also provide an empirical-based method using two-dimensional discrete cosine transform (2D-DCT) derived from its coefficients. Using the most recent algorithms running on MATLAB toolbox, we performed simulations to evaluate the performance of our proposed technique. The results largely present MATLAB as a veritable approach for image processing operations.
Folded-arms square open-loop resonator (FASOLR) is a variant of the conventional microstrip square open-loop resonator (SOLR) that facilitates further device size miniaturization by having the two arms of the conventional SOLR folded inwards. This paper highlights the benefits of this brand of compact SOLR by implementing a five-pole Chebyshev bandpass filter (BPF) using compact FASOLR. The test BPF is presented, with centre frequency of 2.2 GHz, fractional bandwidth of 10%, passband ripple of 0.04321 dB, and return loss of 20 dB. The design is implemented on a Rogers RT/Duroid 6010LM substrate with a dielectric constant of 10.7 and thickness of 1.27 mm. The filter device is manufactured and characterised, with the experimentation results being used to justify the simulation results. The presented measurement and electromagnetic (EM) simulation results demonstrate a good match. The EM simulation responses achieve a minimum insertion loss of 0.8 dB and a very good channel return loss of 22.6 dB. The measurement results, on the other hand, show a minimum insertion loss of 0.9 dB and a return loss of better than 19.2 dB. The filter component has a footprint of 36.08 mm by 6.74 mm (that is, 0.26 λg x 0.05 λg), with λg indicating the guided wavelength for the 50 Ohm microstrip line impedance at the centre frequency of the proposed fifth-order bandpass filter.
The effect of fly ash reinforcement on the room temperature corrosion behaviour an immersion corrosion test, electrochemical tests and optical microscopy. The materials studied were A535 and its metal matrix composites (MMCs) containing 10wt% fly ash, 15wt% fly ash, and a hybrid reinforcement (5wt% fly ash+5wt% SiC). The immersion corrosion test results showed that the corrosion rate of the MMCs increased with increasing fly ash content while the electrochemical test results indicated that their corrosion potential (E corr ) and critical pitting (breakdown) potential (E p ) decreased with increasing fly ash content. The repassivation potentials of the MMCs were found to be more positive than that of the matrix alloy. The corrosion of the MMCs, which was accompanied by loosening of fly ash particles, was also affected by porosity and the presence of several reaction products.
This chapter presents the basic approach of microwave bandpass filter design for 5G network applications. The chapter serves as a reference source to microwave stakeholders with little or no filter design experience. It should help them to design and implement their first filter device using microstrip technology. A three-pole Chebyshev bandpass filter with centre frequency of 2.6 GHz, fractional bandwidth of 3%, passband ripple of 0.04321 dB, and return loss of 20 dB has been designed. The designed filter implementation is based on the Rogers RT/Duroid 6010LM substrate with a 10.7 dielectric constant and 1.27 mm thickness. The circuit model and microstrip layout results of the BPF are presented and show good agreement. The microstrip layout simulation results show that a less than 1.8 dB minimum insertion loss and a greater than 25 dB in-band return loss were achieved. The overall device size of the BPF is 18.0 mm by 10.7 mm, which is equivalent to 0.16λg x 0.09λg, where λg is the guided wavelength of the 50 Ohm microstrip line at the filter centre frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.