Aflatoxin is a secondary metabolite produced by Aspergillus fungi and presents a major food safety concern globally. Among the available methods for prevention and control of aflatoxin, the application of antifungal bacteria has gained favorability in recent years. An endophytic bacterium MS455, isolated from soybean, exhibited broad-spectrum antifungal activity against economically important pathogens, including Aspergillus flavus. MS455 was identified as a strain of Burkholderia based on genomic analysis. Random and site-specific mutations were employed in discovery of the genes that share high homology to the ocf gene cluster of Burkholderia contaminans strain MS14, which is responsible for production of the antifungal compound occidiofungin. RNA-seq analysis demonstrated ORF1, a homolog to the ambR1 LuxR-type regulatory gene, regulates occidiofungin biosynthesis in MS455. Additionally, a total of 284 differentially expressed genes, including 138 up-regulated, and 146 down-regulated genes, suggesting that, in addition to its role in occidiofungin production, ORF1 is involved in expression of multiple genes, especially those involved in ornibactin biosynthesis. Plate bioassays showed the growth of A. flavus was significantly inhibited by the wild-type strain MS455 as compared with the ORF1 mutant. Similarly, corn kernel assays showed that growth of A. flavus and aflatoxin production were reduced significantly by MS455 as compared with buffer control and the ORF1 mutant. Collectively, the results demonstrated that production of occidiofungin is essential for antifungal activity of the endophytic bacterium MS455. This research has provided insights to understanding antifungal mechanisms of MS455 and development of biological approaches to prevent aflatoxin contamination in plant production.
Burkholderia sp. strain MS389, an endophytic bacterium, was isolated from a healthy soybean plant growing adjacent to a patch of plants affected by charcoal rot disease, caused by the fungal pathogen Macrophomina phaseolina. Preliminary studies demonstrated that strain MS389 possesses antimicrobial activities against multiple plant pathogens. Burkholderia sp. strain MS389 was found to have three circular chromosomes of 3,563,380 bp, 3,002,449bp, and 1,180,421 bp in size, respectively. The 7,746,250-bp genome, with 66.73% G+C content, harbors 6,756 protein coding genes in the predicted 6,985 genes. In total, 18 rRNAs, 68 tRNAs, 4 ncRNAs were identified and 139 pseudogenes were annotated as well. The findings of this study will provide valuable data to explore the antimicrobial mechanisms of the endophytic bacterial strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.