Gold nanoparticles, encapsulated within polyacrylamide electrophoresis gels, can discriminate between number of type of sulphur modifications in DNA strands.
DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecules, such as the high level of control and programmability found with DNA and the chemical diversity and biological stability of peptides. These hybrid systems offer great potential in fields such as therapeutics, nanotechnology, and robotics to name a few. Using the first DNA-β-turn peptide conjugate, we present three studies designed to investigate the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated either independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.
DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecules, such as the high level of control and programmability found with DNA and the chemical diversity and biological stability of peptides. These hybrid systems offer great potential in fields such as therapeutics, nanotechnology, and robotics to name a few. Using the first DNA-β-turn peptide conjugate, we present three studies designed to investigate the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated either independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.
DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecules, such as the high level of control and programmability found with DNA and the chemical diversity and biological stability of peptides. These hybrid systems offer great potential in fields such as therapeutics, nanotechnology, and robotics to name a few. Using the first DNA-β-turn peptide conjugate, we present three studies designed to investigate the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated either independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.