RESUMO O objetivo deste trabalho foi estudar a influência do diâmetro da madeira de eucalipto na produtividade e nas propriedades do carvão vegetal. A carbonização foi realizada em forno circular de alvenaria com capacidade volumétrica de 12 st, acoplado a uma fornalha para combustão dos gases. Foi analisada a madeira de Eucalyptus sp., em duas classes de diâmetro, de 7-12 cm e 13-18 cm. Para a determinação das propriedades do carvão vegetal foram coletadas amostras em três posições equidistantes do forno, com distância de 1 metro entre os pontos de coleta, considerando o no sentido da porta para fundo do forno. As carbonizações realizadas com madeira de menor diâmetro apresentaram redução de 14,86% do tempo de carbonização. O rendimento gravimétrico em carvão vegetal para as classes de menor e maior diâmetro foram de 33,62% e 31,67%, respectivamente. Os valores obtidos para análise química imediata do carvão para ambas as classes estão de acordo com o desejável para uso siderúrgico. Os valores de friabilidade para ambas as classes foram classificados como pouco friáveis. Entretanto, o carvão produzido com madeira de menor diâmetro teve menor percentual de geração de finos. A carbonização utilizando madeira de menor diâmetro apresentou maior produtividade em carvão vegetal. Palavras-chave: rendimento gravimétrico; tempo de carbonização; friabilidade.
Este trabalho teve como objetivo determinar as propriedades de painéis fabricados com mistura de partículas de madeira de Eucalyptus grandis, polietileno de alta densidade, polietileno de baixa densidade e polipropileno. Empregaram-se duas formulações adesivas (uréia-formaldeído e uréia-formaldeído contendo 0,5% de epóxi). De modo geral, as propriedades dos painéis foram afetadas pela composição das partículas. Os painéis com melhores propriedades foram fabricados com 75% de partículas de madeira e 25% de partículas de polietileno de alta densidade. A adição de epóxi ao adesivo uréico aumentou os valores do módulo de ruptura, dureza Janka, e reduziu o inchamento, em espessura, de alguns painéis. As propriedades mecânicas da maioria dos painéis, exceto o módulo de elasticidade, ultrapassaram os valores mínimos estabelecidos na norma ANSI/A1-208/93.
The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm.We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.
The objective of this work was to determine the properties of particleboard panels made of “in natura” sugarcane bagasse particles, heated at 250 °C for 5 minutes. Various particle proportions were utilized to produce the panels and their properties were compared with that of a panel made of Pinus sp. The panels were produced with 8% tannin formaldehyde adhesive, and 0.5% paraffin emulsion, being pressed at 32 kgf.cm-2 for 10 minutes at 180 ° C. It was determined the basic density of the “in natura” and heat-treated particles, their chemical composition, as well as the compression ratio necessary to obtain panels with density equal to 0.75 g.cm-3. The basic density of the panels, hygroscopic equilibrium humidity, thickness swelling, linear expansion, water vapor adsorption, modulus of elasticity and rupture, perpendicular traction, screw pullout, and Janka hardness were determined. The basic densities of Pinus particles and sugarcane bagasse without and with heat treatment were 0.46, 0.27 and 0.30 g.cm-3, respectively. The average specific mass of the panels was 0.74 g.cm-3 with no significant difference between them. Generally, panels made of sugarcane particles were less hygroscopic and dimensionally more stable than panels made of Pinus particles. However, the perpendicular tensile strength, screw pullout and Janka hardness of these panels were higher than for the Pinus panels. The heat treatment of sugarcane bagasse particles resulted in better mechanical properties of perpendicular traction and Janka hardness. In general, the panels are within the limits set by ANSI A208.1. It is therefore possible to replace panels made of Pinus particles for the ones made of sugarcane bagasse, provided that at least 25% of the particles are heat treated for 5 minutes at 250 ° C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.