The aim of this study was to evaluate the metabolism of odontoblast-like MDPC-23 cells subjected to direct LLL irradiation. The cells were seeded (20,000 cells/well) in 24-well plates and incubated for 24 hours at 37• C. After this period, the culture medium (DMEM) was replaced by fresh DMEM supplemented with 2 or 5% (stress induction by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to laser doses of 2, 4, 10, 15 and 25 J/cm 2 from a near infrared InGaAsP diode laser prototype (LASERTable; 780±3 nm, 40 mW). One control group (sham irradiation) was established for each experimental condition (laser dose x FBS supplementation). Three and 72 hours after the last irradiation, cells were analyzed with respect to metabolism, morphology, total protein expression and alkaline phosphatase (ALP) activity. Higher metabolism and total protein expression were observed 72 hours after the last irradiation at the doses of 15 and 25 J/cm 2 (Mann-Whitney; p<0.05). Higher ALP activity was obtained with 5% FBS when the cells were irradiated with doses of 2 and 10 J/cm 2 . For the dose of 25 J/cm 2 , the highest ALP activity was observed with 10% FBS. It was concluded that the LLLT parameters used in this study stimulated the metabolic activity of the MDPC-23 cells, especially at the doses of 15 and 25 J/cm 2 .
In spite of knowing that cells under stress are biostimulated by low level laser (LLL) irradiation, the ideal condition of stress to different cell lines has not yet been established. Consequently, the aim of the present in vitro study was to evaluate the effects of a defined parameter of LLL irradiation applied on stressed odontoblast-like pulp cells (MDPC-23). The cells were seeded (12500 cells/cm 2 ) in wells of 24-well plates using complete culture medium (DMEM) and incubated for 24 hours. Then, the DMEM was replaced by a new medium with low concentrations (nutritional stress condition) of fetal bovine serum (FBS) giving rise to the following experimental groups: G1: 2% FBS; G2: 5% FBS; and G3: 10% FBS. The cells were irradiated three times with LLL in specific parameters (808±3 nm, 100 mW, 1.5 J/cm 2 ) every 24 hours. No irradiation was carried out in groups G4 (2% FBS-Control), G5 (5% FBS-Control), and G6 (10% FBS-Control). For all groups, the cell metabolism (MTT assay) and morphology (SEM) was evaluated. The experimental groups showed enhanced cell metabolism and normal cell morphology regardless of FBS concentration. A slight increase in the cell metabolism was observed only in group G2. It was concluded that cell nutritional stress caused by reducing the concentration of FBS to 5% is the most suitable method to assess the biostimulation of LLL irradiated MDPC-23 cells.MDPC-23 cells adhered to the glass substrate exhibited a spindle-shaped morphology and some mitosis were observed (arrows); SEM ×500
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.