Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally-delivered Adenovirus type (Ad) 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a post-vaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Oral- or intranasal-vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally-vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal-route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.
Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce SARS-CoV-2 transmission around the world. Here we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. Hamsters administered two doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days post challenge. Oral immunization induced anti-spike IgG and neutralizing antibodies were induced upon oral immunization with the sera demonstrating neutralizing activity. Overall this data demonstrates the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.
BackgroundDespite the plethora of efficacious vaccines to the initial Wuhan strain of SARS-CoV-2, these do not induce robust mucosal immunity, offering limited protection against breakthrough infection and replication in the respiratory tract. The mucosa is the first line of defense, therefore a vaccine that induces a mucosal IgA response could be an important strategy in curbing the global pandemic.MethodsWe conducted a single-site, dose-ranging, open-label clinical trial of an oral SARS-CoV-2 vaccine to determine safety and immunogenicity. This tablet vaccine is comprised of a non-replicating adenoviral vector expressing the SARS-CoV-2 Spike and Nucleocapsid genes and a double-stranded RNA adjuvant. 35 adult subjects meeting inclusion/exclusion criteria received a single low (1×1010 IU) or high (5×1010 IU) dose and 5 subjects received two low doses. Nasal, saliva and serum samples were assessed for the presence of IgA, IgG and surrogate neutralizing antibodies. Convalescent subjects between 1-8 months post infection were recruited to give nasal, saliva, and serum samples for comparison.ResultsThe vaccine was well tolerated without any dose-limiting toxicity observed. No serum neutralizing antibodies were observed, but modest IgA responses were seen in serum post immunization. The majority of vaccine recipients had an increase in mucosal secretory IgA which was highly cross-reactive against all coronaviruses tested and persisted up to 360 days. Furthermore, the nasal IgA induced by vaccination has superior neutralizing activity compared to convalescent nasal samples.ConclusionThe vaccine was safe, well tolerated and generated mucosal immune responses including cross-reactive surrogate neutralizing secretory IgA. These results demonstrate the ability of a mucosal vaccine to induce long-lasting mucosal IgA to SARS-CoV-2.Graphical Abstract
There is an urgent need to develop efficacious vaccines against SARS-CoV-2 that also address the issues of deployment, equitable access, and vaccine acceptance. Ideally, the vaccine would prevent virus infection and transmission as well as preventing COVID-19 disease. We previously developed an oral adenovirus-based vaccine technology that induces both mucosal and systemic immunity in humans. Here we investigate the immunogenicity of a range of candidate adenovirus-based vaccines, expressing full or partial sequences of the spike and nucleocapsid proteins, in mice. We demonstrate that, compared to expression of the S1 domain or a stabilized spike antigen, the full length, wild-type spike antigen induces significantly higher neutralizing antibodies in the periphery and in the lungs, when the vaccine is administered mucosally. Antigen-specific CD4+ and CD8+ T cells were induced by this leading vaccine candidate at low and high doses. This full-length spike antigen plus nucleocapsid adenovirus construct has been prioritized for further clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.