With the ever-increasing prevalent power crisis and pollution of the environment, solar power, has attracted greater attention as a new and clean energy source. It provides an alternative solution for isolated sites with an unavailable grid connection. However, it is not without any drawbacks, mainly its intermittent nature, related primarily owing to its reliance on meteorological variables such as the temperature outside and the amount of sunlight. In effect, the PV systems that produced electrical energy could well display an electricity excess or deficit at the loads level, likely to result in system service discontinuity. In this respect, the present paper is designed to provide an intelligent management strategy to PV station owners with a dump load. It can involve serving two customers simultaneously according to the following scenarios: the PV production installation of the customer1 is greater than their required load; however, the customer2's neighboring station does not have enough power to cover its electrical load. This case brings electrical energy from the initial station to make up for the shortfall, and vice versa. Lithium-ion batteries step in the case when the essential electrical power cannot be delivered either by the local station or the neighboring one or to keep the accumulated power excess. If one of the stations (1 or 2) detects a power surplus and the batteries are completely charged, the generated power excess must be redirected to a secondary load, commonly known as the dump load. Relying on the artificial neural network controller, the suggested exchange control is used for two independent PV-battery stations with dump load. The MATLAB/Simulink attained simulation turns out to demonstrate the advanced controller’s noticeable performance and effectiveness in managing the standalone PV system’s operability in terms of continuous electrical energy delivery flow to the resistive load while reducing power waste and increasing the lithium-ion battery lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.