Functions of retinoic acid receptors (RARs) in adult CNS have been poorly characterized. Here we investigated potential neuroprotective action of tamibarotene (Am80), an RARα/β agonist available for the treatment of acute promyelocytic leukemia, on midbrain dopaminergic neurons. Am80 protected dopaminergic neurons in rat midbrain slice culture from injury mediated by lipopolysaccharide‐activated microglia, without affecting production of nitric oxide, a key mediator of cell injury. The effect of Am80 was mimicked by another RAR agonist, TAC‐101, but not by a retinoid X receptor agonist, HX630, and HX630 did not synergize with Am80. We observed neuronal expression of RARα and RARβ in midbrain slice culture and also found that Am80 increased tissue level of brain‐derived neurotrophic factor (BDNF) mRNA. Exogenous BDNF prevented dopaminergic neurodegeneration, and the neuroprotective effect of Am80 was suppressed by a TrkB inhibitor, K252a, or by anti‐BDNF neutralizing antibody. These results reveal a novel action of RARs mediated by enhancement of BDNF expression. Finally, oral administration of Am80 prevented dopaminergic cell loss in the substantia nigra induced by local injection of lipopolysaccharide in mice, indicating that RARs are a promising target of therapeutics for neurodegenerative disorders.
The muscarinic M receptor (MR) is a promising target for treating cognitive impairment associated with cholinergic deficits in disorders such as Alzheimer's disease and schizophrenia. We previously reported that cooperativity (α-value) was key to lowering the risk of diarrhea by MR positive allosteric modulators (M PAMs). Based on this, we discovered a low α-value M PAM, TAK-071 (α-value: 199), and characterized TAK-071 using T-662 as a reference M PAM with high α-value of 1786. Both TAK-071 and T-662 were potent and highly selective M PAMs, with inflection points of 2.7 and 0.62 nM, respectively. However, T-662 but not TAK-071 augmented isolated ileum motility. TAK-071 and T-662 increased hippocampal inositol monophosphate production through MR activation and improved scopolamine-induced cognitive deficits in rats at 0.3 and 0.1 mg/kg, respectively. TAK-071 and T-662 also induced diarrhea at 10 and 0.1 mg/kg, respectively, in rats. Thus, taking into consideration the fourfold lower brain penetration ratio of T-662, TAK-071 had a wider margin between cognitive improvement and diarrhea induction than T-662. Activation of MR increases neural excitability via membrane depolarization, reduced afterhyperpolarization, and generation of afterdepolarization in prefrontal cortical pyramidal neurons. T-662 induced all three processes, whereas TAK-071 selectively induced afterdepolarization. Combining sub-effective doses of TAK-071, but not T-662, with an acetylcholinesterase inhibitor, significantly ameliorated scopolamine-induced cognitive deficits in rats. TAK-071 may therefore provide therapeutic opportunities for cognitive dysfunction related to cholinergic deficits or reduced MR expression, while minimizing peripheral cholinergic side effects.
GPR52 is a Gs-coupled G protein-coupled receptor that is predominantly expressed in the striatum and nucleus accumbens (NAc) and was recently proposed as a potential therapeutic target for schizophrenia. In the current study, we investigated the in vitro and in vivo pharmacologic activities of a novel GPR52 agonist, 4-(3-(3-fluoro-5-(trifluoromethyl)benzyl)-5-methyl-1-1,2,4-triazol-1-yl)-2-methylbenzamide (FTBMT). FTBMT functioned as a selective GPR52 agonist in vitro and in vivo, as demonstrated by the activation of Camp signaling in striatal neurons. FTBMT inhibited MK-801-induced hyperactivity, an animal model for acute psychosis, without causing catalepsy in mice. The c-fos expression also revealed that FTBMT preferentially induced neuronal activation in the shell of the Nac compared with the striatum, thereby supporting its antipsychotic-like activity with less catalepsy. Furthermore, FTBMT improved recognition memory in a novel object-recognition test and attenuated MK-801-induced working memory deficits in a radial arm maze test in rats. These recognitive effects were supported by the results of FTBMT-induced c-fos expression in the brain regions related to cognition, including the medial prefrontal cortex, entorhinal cortex, and hippocampus. Taken together, these findings suggest that FTBMT shows antipsychotic and recognitive properties without causing catalepsy in rodents. Given its unique pharmacologic profile, which differs from that of current antipsychotics, FTBMT may provide a new therapeutic option for the treatment of positive and cognitive symptoms of schizophrenia.
Activation of muscarinic M receptor (MR) is a promising approach for improving cognitive impairment in Alzheimer's disease. However, an MR-selective positive allosteric modulator (PAM), benzyl quinolone carboxylic acid (BQCA), at 30 mg/kg, induced diarrhea in wild-type mice, but not in MR knockout mice. Moreover, BQCA (0.1-1000 nM) augmented electric field stimulation (EFS)-induced ileum contraction in an in vitro Magnus assay. Thus, we decided to establish a drug-screening strategy to discover novel M PAMs producing potent cognitive improvement with minimized gastrointestinal (GI) dysfunction. We assessed PAM parameters of various M PAMs with ≥100-fold selectivity over other muscarinic receptor subtypes by using in vitro binding and functional analysis. Evaluation of these M PAMs in the Magnus assay revealed a significant correlation between percentage of ileum contractions at 1 M and their-value, a PAM parameter associated with the binding cooperativity between acetylcholine and M PAM. M PAMs with lower -value showed lower impact on EFS-induced ileum contraction. Next, we characterized in vivo profiles of two M PAMs: compound A (log = 1.18) and compound B (log = 3.30). Compound A, at 30 mg/kg, significantly improved scopolamine-induced cognitive deficits without prominent signs of diarrhea at up to 1000 mg/kg in mice. In contrast, compound B, at 10 mg/kg, showed both significant improvement of scopolamine-induced cognitive deficits and severe diarrhea. Thus, fine adjustment of the -values could be a key to discovering M PAMs yielding potent cognitive improvement with a lower risk of GI effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.