Miscibility with oil lies among the main advantages of dense CO2 injection for pore scale oil displacement during tertiary recovery. At reservoir scale, injecting dense CO2 in the form of foam can also improve its sweep efficiency. However, although the use of such miscible dense CO2 foams has been considered in over twenty pilots since the 1980's, only few lab studies have considered foams formed with CO2 in this particular thermodynamical state. Indeed, dense CO2 has solvation properties and a viscosity higher than that of a gas. This impacts several attributes of its foams in porous media, such as Mobility Reduction Factors (MRF) and behavior in presence of oil. We present new results demonstrating that classical foamers are not effective in improving mobility control of dense CO2, but that relatively high MRF are achieved using carefully formulated surfactants. Based on these findings, we study the impact of foam on miscible flooding efficiency in corefloods. Reversely, we also evaluate how miscibility of CO2 with oil impacts foam MRF. Our approach is based on multiple corefloods experiments, with different formulations, at various oil saturations. Additionally, physical-chemistry measurements such as interfacial tension estimations and foam stability monitoring are performed in reservoir conditions (pressure and temperature). This set of experiments shows that a balance must be found between maximizing MRF and minimizing the risk of emulsion formation in porous media. This paper brings new insights on the interpretation of CO2 foams coreflood results, based on the thermodynamical properties of the CO2 phase. It provides the reader with a clearer view of gas properties that must be considered when analyzing results of dense CO2 foams corefloods. This can help reconcile seemingly contradictory results appearing in the literature, particularly regarding the values of MRF as a function of pressure and in the presence of oil.
The use of foams for gas floods conformance control attracts a renewed interest in recent years. Nowadays, despite the low oil price environment, some foam EOR projects remain active both at lab and pilot scale. Indeed, such applications have the potential to not only improve the oil rate, but may also reduce costs associated with gas injection and cycling. In other words, foam can increase gas injection efficiency both in terms of oil production and of gas consumption. In this paper, we describe the design of a dedicated foaming formulation and its application in a CO2 foam pilot in a CO2 flood in the US Gulf Coast. The main hurdle for formulation design was the use of a high salinity and hardness production water for chemicals injection. Our experimental approach to overcome this challenge was based on successive steps, comprising automated solubility evaluation of multi-component formulations, adsorption measurements, foam stability evaluation and finally corefloods in reservoir conditions. Following this lab work, we carried out the foam injection pilot on a 40 acre, 6-well flood pattern consisting of three injectors and six producers. Conformance rather than indepth mobility control was targeted, and a relatively low foam volume representing 1% pore volume of the pattern was thus injected. The treatment was applied as three alternating slugs of aqueous foaming solution and CO2 over a period of four months, with the aim of generating foam in-situ in the near- wellbore area. Strong foam formation in the near-wellbore was evidenced by a strong drop in CO2 injectivity after each surfactant slug. Injectivity then slowly recovered, with a slower recovery as a function of the slug number, indicative of foam propagation deeper in the reservoir. Injection logs showed an efficient diversion of CO2 from thief zones to previously poorly swept reservoir intervals. On the production side, although much less CO2 was injected, oil rate was relatively constant, exhibiting little decline. We interpret this as a consequence of the injected CO2 flooding new reservoir zones with higher residual oil saturation. Overall, the strong decrease in CO2 consumption at a relatively constant oil rate translates into a noticeable increase of the injected CO2 efficiency. This paper describes the formulation design and the foam pilot implementation in challenging conditions, in particular with regard to salinity and hardness of the available injection water. It qualifies foam as a straightforward, low risk conformance method. Indeed, besides potential increases in oil rate, the enhancement of CO2 injection efficiency demonstrates the success of this application.
The most widespread thermal EOR method relies on steam injection. Steam is employed to warm up the reservoir, increase oil mobility and in turn enhance heavy oil recovery. In steam injection processes, recovery of oil is limited by steam channeling due to reservoir heterogeneities. Early breakthrough implies large consumption of steam and incomplete reservoir drainage. A low cost viable option to minimize heat loss consists in generating steam foam in situ. Foam will reduce steam mobility, increase its apparent viscosity and reduce steam channeling. Foam should form and flow in reservoir swept regions containing residual oil saturation. For a field application, where the residual oil saturation may vary from 0 to 30% depending on the recovery method applied, any effect of the oil on foam stability becomes a crucial matter. The scope of this work is to design an appropriate foaming surfactant solution in reservoir representative conditions of 250°C. We study the impact of crude oil on its foaming properties.Previous publications demonstrate that formulation viscosity as well as foamability and foam stability are key parameters to optimize steam mobility reduction in model porous media. It is also well known that measuring foam properties at 200°C in presence of heavy crude oil is an experimental challenge. Injecting heavy oil in common equipment is often problematic, due to its high viscosity and low flowability. Our methodology is based on the use of high pressure/high temperature set-ups, such as sapphire view cell to measure foam stability, capillary rheometer to measure formulation viscosity and high temperature sandpack experiments to measure gas mobility reduction in model porous media. We also present a new high pressure/high temperature screening tool based on disposable containers to evaluate foaming properties in presence of heavy crude oil.We have shown in previous work that long chain surfactants present high foam forming ability at 200°C. We build on our knowledge to demonstrate foam existence at 250°C. This study highlights the performance of new foaming formulations at this temperature. Our development effort has been concentrated on building a novel experimental setup and also providing data to evaluate the impact of heavy crude oil on foaming performances. Based on our experimental results, we demonstrate that foam stability in presence of crude oil can be improved by surfactant synergetic associations.Overall, this work offers new insights to design efficient steam foaming formulations up to 250°C, in particular in presence of heavy crude oil. This novel approach helps in developing more efficient steam foam EOR solutions and in optimizing steam injection processes.
Steam injection is currently the most widespread method for heavy oil recovery. However, a serious limitation of this method is its energy cost due to heat losses in the reservoir. Steam foams can be used to increase the apparent viscosity of steam. Such an improvement of steam mobility control optimizes the heat distribution in the reservoir and reduces the impact of reservoir heterogeneities in order to raise oil recovery.Optimized formulations are required to generate stable steam foams in reservoir conditions. This paper presents an original workflow to design efficient combinations of surfactants for steam foam stabilization. The first step is the selection of surfactants demonstrating a good chemical stability at steam temperature, together with a good solubility. The second step consists in evaluating foam stability of these formulations at high pressure and temperature.We study the thermal stability of surfactants using anaerobic screening tests at high temperature. The chemical structure of surfactants is evaluated through quantitative NMR analysis before and after thermal treatment in various conditions (temperatures from 150 to 250°C and durations from 24h to a week). Generated data permit a better understanding of surfactants degradation mechanisms. A customized high pressure/high temperature sapphire view cell is used to investigate the impact of high temperature on the solubility of formulations and to generate foams in reservoir conditions of pressure and temperature. A custom image processing routine is used to measure foam volume as a function of time, in order to evaluate foam stability and rank formulations.We demonstrate the thermal stability of specific surfactants up to 240°C in anaerobic conditions. A strong influence of temperature on foam stability is observed. Our experiments serve as a baseline to design new formulations giving much longer foam stability at 185°C than benchmarks based on alpha olefin sulfonate (AOS) and alkyl aryl sulfonate (AAS). This paper thus aims at providing new insights on steam foam applications with the development of a dedicated surfactant selection workflow and the characterization of new steam foam formulations with improved performances.
Use of foams to control CO2 floods conformance is attracting a renewed interest in recent years due its flexibility and ease of application. This application becomes even more attractive in current times of low oil price, as it can be an inexpensive mean to maximize CO2 utilization efficiency and increase production at no capital expenses. However, it is generally recognized that to maximize chances of success of a pilot application, an appropriate foaming formulation must be designed for a given reservoir and characterized in petrophysics lab. This usually requires an extensive laboratory work that is not always compatible with cost constraints. We present a new cost-effective workflow that focuses on evaluating two formulation performance indicators derived from the population balance model: foam creation (related to foaming power) and resistance to foam destruction (related to foam stabilization against coarsening and coalescence). We assess these two parameters in representative reservoir conditions by measuring foam mobility reduction in porous media and foam lifetimes. Experimental results and simple scaling arguments show that these two measurements, both of importance to the application, are mostly independent. This shed light on a recurring question pertaining to the relevance of bulk foam experiments to predict foam efficiency in porous media. With this in mind, we present a new approach for measuring mobility reduction in porous media with a higher throughput than usual corefloods experiments. This methodology is based on sandpack experiments as well as serial coreflood experiments that allow multiple successive formulations testing. We show that the link between sandpack and coreflood results is far from being straightforward, and depends on static (geometrical) as well as dynamic (flow) parameters. Overall, this work provides new insights on the major performance indicators used to evaluate foam efficiency for gas conformance control in oil reservoirs. We build on this understanding to present a novel approach that can help developing more efficient foam EOR solutions. In particular, it allows tailoring foaming agents properties (such as foaminess and foam stabilization) to specific conditions of a given application (oil saturation, vertical heterogeneity, etc…).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.