Taste sensitivity differs among animal species depending on feeding habitat. To humans, sucrose is one of the sweetest natural sugars, and this trait is expected to be similar in other primates. However, previous behavioral tests have shown that some primate species have equal preferences for maltose and sucrose. Because sweet tastes are recognized when compounds bind to the sweet taste receptor Tas1R2/Tas1R3, we evaluated the responses of human and Japanese macaque Tas1R2/Tas1R3 to various natural sugars using a heterologous expression system. Human Tas1R2/Tas1R3 showed high sensitivity to sucrose, as expected; however, Japanese macaque Tas1R2/Tas1R3 showed equally high sensitivity to maltose and sucrose. Furthermore, Japanese macaques showed equally high sensitivity to sucrose and maltose in a two-bottle behavioral experiment. These results indicate that Japanese macaques have high sensitivity to maltose, and this sensitivity is directly related to Tas1R2/Tas1R3 function. This is the first molecular biological evidence that for some primate species, sucrose is not the most preferable natural sugar, as it is for humans.
For many primates, sweet taste is palatable and is an indicator that the food contains carbohydrates, such as sugars and starches, as energy sources. However, we have found that Asian colobine monkeys (lutungs and langurs) have low sensitivity to various natural sugars. Sweet tastes are recognized when compounds bind to the sweet taste receptor TAS1R2/TAS1R3 in the oral cavity; accordingly, we conducted a functional assay using a heterologous expression system to evaluate the responses of Javan lutung (Trachypithecus auratus) TAS1R2/TAS1R3 to various natural sugars. We found that Javan lutung TAS1R2/TAS1R3 did not respond to natural sugars such as sucrose and maltose. We also conducted a behavioral experiment using the silvery lutung (Trachypithecus cristatus) and Hanuman langur (Semnopithecus entellus) by measuring the consumption of sugar-flavored jellies. Consistent with the functional assay results for TAS1R2/TAS1R3, these Asian colobine monkeys showed no preference for sucrose or maltose jellies. These results demonstrate that sweet taste sensitivity to natural sugars is low in Asian colobine monkeys, and this may be related to the specific feeding habits of colobine monkeys.
The influence of natural diet composition, food intake level, and body size on ingesta passage in primates. Comparative Biochemistry and Physiology-Part A: Molecular and Integrative Physiology, 150(3):274-281. Abstract An important component of digestive physiology involves ingesta mean retention time (MRT), which describes the time available for digestion. At least three different variables have been proposed to influence MRT in herbivorous mammals: body mass, diet type, and food intake (dry matter intake, DMI). To investigate which of these parameters influences MRT in primates, we collated data for 19 species from trials where both MRT and DMI were measured in captivity, and acquired data on the composition of the natural diet from the literature. We ran comparative tests using both raw species values and phylogenetically independent contrasts. MRT was not significantly associated with body mass, but there was a significant correlation between MRT and relative DMI (rDMI, g/kg0.75/d). MRT was also significantly correlated with diet type indices. Thus, both rDMI and diet type were better predictors of MRT than body mass. The rDMI-MRT relationship suggests that primate digestive differentiation occurs along a continuum between an "efficiency" (low intake, long MRT, high fiber digestibility) and an "intake" (high intake, short MRT, low fiber digestibility) strategy. Whereas simple-stomached (hindgut fermenting) species can be found along the whole continuum, foregut fermenters appear limited to the "efficiency" approach. Clauss et al. Primate ingesta retention relationship suggests that primate digestive differentiation occurs along a continuum between an "efficiency" (low intake, long MRT, high fiber digestibility) and an "intake" (high intake, short MRT, low fiber digestibility) strategy. Whereas simple-stomached (hindgut fermenting) species can be found along the whole continuum, foregut fermenters appear limited to the "efficiency" approach. Key words: ingesta passage, mean retention time, digestive anatomy, digestive physiology, feeding ecology, herbivory, foregut fermenter 35 36 Clauss et al. Primate ingesta retention 362, L.C., Wheeler, P., 1995. The expensive tissue hypothesis: The brain and the digestive system in human and primate evolution. gut fill, liquid and particle marker retention in mouflon (Ovis ammon musimon), and a comparison with roe deer (Capreolus capreolus). Acta Theriologica 49, 503-515. Bell, R.H.V., 1971. A grazing ecosystem in the Serengeti. Scientific American 225, 86-93.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.