Software-defined wireless sensor networking (SDWSN) is an emerging networking architecture which is envisioned to become the main enabler for the internet of things (IoT). In this architecture, the sensors plane is managed by a control plane. With this separation, the network management is facilitated, and performance is improved in dynamic environments. One of the main issues a sensor environment is facing is the limited lifetime of network devices influenced by high levels of energy consumption. The current work proposes a system design which aims to improve the energy efficiency in an SDWSN by combining the concepts of content awareness and adaptive data broadcast. The purpose is to increase the sensors’ lifespan by reducing the number of generated data packets in the resource-constrained sensors plane of the network. The system has a distributed management approach, with content awareness being implemented at the individual programmable sensor level and the adaptive data broadcast being performed in the control plane. Several simulations were run on historical weather and the results show a significant decrease in network traffic. Compared to similar work in this area which focuses on improving energy efficiency with complex algorithms for routing, clustering, or caching, the current proposal employs simple computing procedures on each network device with a high impact on the overall network performance.
In recent years, the software-defined networking (SDN) paradigm has been deployed in various types of networks, including wireless sensor networks (WSN), wide area networks (WAN) and data centers. Given the wide range of SDN domain applicability and the large-scale environments where the paradigm is being deployed, creating a full real test environment is a complex and costly task. To address these problems, software-based simulations are employed to validate the proposed solutions before they are deployed in real networks. However, simulations are constrained by relying on replicating previously saved logs and datasets and do not use real time hardware data. The current article addresses this limitation by creating a novel hybrid software and hardware SDN simulation testbed where data from real hardware sensors are directly used in a Mininet emulated network. The article conceptualizes a new approach for expanding Mininet’s capabilities and provides implementation details on how to perform simulations in different contexts (network scalability, parallel computations and portability). To validate the design proposals and highlight the benefits of the proposed hybrid testbed solution, specific scenarios are provided for each design idea. Furthermore, using the proposed hybrid testbed, new datasets can be easily generated for specific scenarios and replicated in more complex research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.