Twenty Trichoderma isolates were collected on 13 Serbian Agaricus bisporus farms and one in Bosnia and Herzegovina during 2006-2010. Twelve isolates were classified into five species by standard mycological studies and ITS1/ITS4 sequence analyses, namely Trichoderma atroviride, Trichoderma koningii, Trichoderma virens, Trichoderma aggressivum f. europaeum and Trichoderma harzianum. Eight isolates were not identified to the species level but were shown to be related to T. harzianum. The isolates of T. harzianum exhibited the highest virulence to the harvested A. bisporus pilei and T. virens and T. aggressivum f. europaeum the lowest. Antifungal activity of two biofungicides based on Bacillus subtilis and tea tree oil and the fungicide prochloraz manganese were tested in vitro to all Trichoderma isolates. Prochloraz manganese and B. subtilis were highly toxic to all tested Trichoderma isolates, their ED 50 values were below 0.3 and 1.3 mg L −1 , respectively. Tea tree oil did not exhibit a significant antifungal activity (ED 50 = 11.9-370.8 mg L −1 ). The effectiveness of biofungicides was evaluated against T. harzianum in a mushroom growing room, and they were applied alone or in combination with the fungicide at a respective proportion of 20:80%. Prochloraz manganese showed higher effectiveness than both tested biofungicides or their respective mixtures. The biofungicide based on B. subtilis demonstrated greater effectiveness in preventing disease symptoms than tea tree oil. B. subtilis combined with the fungicide revealed less antagonism in effectiveness against pathogen than tea tree oil.
Soilborne pathogens cause significant economic losses in agricultural production all over the world. These species can survive for many years in the absence of a host plant by forming persistent structures such as microsclerotia, sclerotia, chlamydospores or oospores. Consequently, soilborne diseases are particularly difficult to predict, detect, diagnose and successfully control. Over the past 30 years, a fumigant, methyl bromide, has been widely used for their control in many crops. In 1992, methyl bromide was listed as an ozone-depleting substance under the Montreal Protocol − an international treaty to protect the ozone layer. During the phaseout of methyl bromide, problems generated in agricultural production made it clear that dependence on a single method or a single chemical should be avoided. The objective of this review paper was to summarize the current knowledge about different methods of soilborne disease control including: crop rotation, steam soil disinfection, soil amendments, hydroponics and soilless growing systems, soil solarization, grafting, biological control and use of natural compounds, and chemical control. Positive and negative aspects of all available methods were reviewed. Benefits, achieved by simultaneous application of several methods based on different mechanisms of actions, are discussed.
Rubbery taproot disease of sugar beet (RTD), associated with ‘Candidatus Phytoplasma solani’, appeared in 2020 on an epidemic scale in northern Serbia and southern Slovakia, situated at opposite edges of the Pannonian Plain. In the affected locations where the disease was assessed, symptomatic sugar beets were analysed for phytoplasma infection. Additionally, multilocus sequence analyses of ‘Ca. P. solani’ strains on epidemiologically informative marker genes (tuf, stamp and vmp1) were performed. Symptomatic sugar beets from other countries of the Pannonian Plain (Croatia, Hungary and Austria), one sample from Germany, and red beets from Serbia were included in the analyses. ‘Ca. P. solani’ was detected in sugar beet in all assessed countries, as well as in red beet. Molecular analyses revealed the high genetic variability of ‘Ca. P. solani’ with the presence of all four tuf-types (a, b1, b2 and d), 14 stamp genotypes (seven new) and five vmp1 profiles (one new). The most common multilocus genotype in Serbia, Slovakia, Croatia, and Hungary was dSTOLg (tuf-d/STOL/V2-TA). It was dominant on sites with epidemic RTD outbreaks in the Pannonian Plain and in several sugar beet fields with non-epidemic RTD occurrence suggesting the prevalence of a particular epidemiological pathway during the epidemic’s phases.
Rubbery taproot disease (RTD) of sugar beet was observed in Serbia for the first time in the 1960s. The disease was already described in neighbouring Bulgaria and Romania at the time, but it was associated with abiotic factors. In this study on RTD of sugar beet in its main growing area of Serbia, we provide evidence of the association between 'Ca. P. solani' (stolbur phytoplasma) infection and the occurrence of typical RTD symptomatology. 'Ca. P. solani' was identified by PCR and the sequence analyses of 16S rRNA, tuf, secY and stamp genes. In contrast, the causative agent of the syndrome “basses richesses” of sugar beet, namely, 'Ca. A. phytopathogenicus', was not detected. Sequence analysis of the stolbur strain’s tuf gene confirmed a previously reported and a new, distinct tuf stolbur genotype (named ‘tuf d’) that is prevalent in sugar beet. The sequence signature of the tuf gene as well as the one of stamp both correlate with the epidemiological cycle and reservoir plant host. This study provides knowledge that enables for the first time the differentiation of stolbur strains associated with RTD of sugar beet from closely related strains, thereby providing necessary information for further epidemiological work seeking to identify insect vectors and reservoir plant hosts. The results of this study indicate that there are differences in hybrid susceptibility. Clarifying the etiology of RTD as a long-known and economically important disease is certainly the first step towards disease management in Serbia and neighboring countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.