Soilborne pathogens cause significant economic losses in agricultural production all over the world. These species can survive for many years in the absence of a host plant by forming persistent structures such as microsclerotia, sclerotia, chlamydospores or oospores. Consequently, soilborne diseases are particularly difficult to predict, detect, diagnose and successfully control. Over the past 30 years, a fumigant, methyl bromide, has been widely used for their control in many crops. In 1992, methyl bromide was listed as an ozone-depleting substance under the Montreal Protocol − an international treaty to protect the ozone layer. During the phaseout of methyl bromide, problems generated in agricultural production made it clear that dependence on a single method or a single chemical should be avoided. The objective of this review paper was to summarize the current knowledge about different methods of soilborne disease control including: crop rotation, steam soil disinfection, soil amendments, hydroponics and soilless growing systems, soil solarization, grafting, biological control and use of natural compounds, and chemical control. Positive and negative aspects of all available methods were reviewed. Benefits, achieved by simultaneous application of several methods based on different mechanisms of actions, are discussed.
SUMMARYDifferent species of the genus Monilinia are common plant pathogens that endanger pome and stone fruit production worldwide. In Serbia, two species of this genus are widely distributed -M. laxa and M. fructigena, while M. fructicola, which is officially on the A2 EPPO List of quarantine pest organisms in Europe and on the 1A part I List of quarantine pest organisms in Serbia, has so far been detected only on stored apple and nectarine fruits. The most important control measures against these pathogens include chemical control in combination with adequate cultural practices, particularly under favourable conditions for disease development. Concerning that species of this genus can cause significant economic losses, knowledge of the pathogen biology, disease epidemiology and pathogen-host interactions is a necessary prerequisite for stable and profitable production of pome and stone fruits.
Brown rot is one of the most important pre- and postharvest fungal diseases of stone fruit worldwide. In Serbia, where production of stone fruit is economically important, Monilinia laxa and M. fructigena are widely distributed. In surveys from 2011 to 2013, 288 isolates of Monilinia spp. were collected from 131 localities in 16 districts and from six hosts in Serbia. Using multiplex polymerase chain reaction, phylogenetic analysis, and morphological characterization, three species of Monilinia were identified as the causal agents of brown rot of stone fruit: M. laxa (89% of isolates), M. fructigena (3%), and M. fructicola (8%). In 2011, M. fructicola was reported for the first time on stone fruit in Serbia, with only one isolate detected. More isolates of M. fructicola were detected in 2012 (2 isolates) and 2013 (20 isolates). The presence of M. fructicola, as well as its increased frequency of detection during the survey, may indicate a change in the population structure of these pathogens, which could have an important impact on brown rot disease management in Serbia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.