Stress relieving heat treatment has been reported to deplete the corrosion resistance of new low-lead and lead-free brass alloys. How the heat treatment, processing and material composition relates to the microstructure and corrosion performance is not well understood. The present study aims to fill this knowledge gap by mapping stress relieving annealing conditions and different standardized compositions to their respective microstructures and dezincification performance.It was found that loss of corrosion resistance was only the most severe for alloys with higher aluminium and iron content. These alloys displayed significant precipitation of intermetallic AlAs-particles on grain boundaries, twins and lead particles, as well as the formation of β-phase along grain boundaries.
Purpose
This study aims to investigate additive manufacturing of nickel-based superalloy IN718 made by powder bed fusion processes: powder bed fusion laser beam (PBF-LB) and powder bed fusion electron beam (PBF-EB).
Design/methodology/approach
This work has focused on the influence of building methods and post-fabrication processes on the final part properties, including microstructure, surface quality, residual stresses and mechanical properties.
Findings
PBF-LB produced a much smoother surface. Blasting and shot peening (SP) reduced the roughness even more but did not affect the PBF-EB surface finish as much. As-printed PBF-EB parts have low residual stresses in all directions, whereas it was much higher for PBF-LB. However, heat treatment removed the stresses and SP created compressive stresses for samples from both PBF processes. The standard Arcam process parameter for PBF-EB for IN718 is not fully optimized, which leads to porosity and inferior mechanical properties. However, impact toughness after hot isostatic pressing was surprisingly high.
Originality/value
The two processes gave different results and also responses to post-treatments, which could be of advantage or disadvantage for different applications. Suggestions for improving the properties of parts produced by each method are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.