The male gamete of the parasitic protozoan Diplauxis hatti has a flagellum consisting of three doublet microtubules. This flagellum exhibits a helicoidal waveform in which bends propagate toward the tip with a frequency of about 1.5 hertz. It is the simplest motile eukaryotic flagellum yet described.
SYNOPSIS. The structure of the cortical region (epicyte and ectoplasm) of the gregarine Lecudina pellucida, an intestinal parasite of the polychete worm Perinereis cultrifera was studied by electron microscopy.
The epicitary folds have 3 unit type membranes. Between the 1st and 2nd is a layer probably composed of fine longitudinal fibrils which has an arch‐like or gutter‐like structure at the crest of the folds. Inside these folds is cytoplasm without any noticeable differentiation or inclusion except for a granular (or finely fibrillar) layer under the limiting inner membrane and close to it.
The ectoplasmic zone of the entocyte is separated from the epicitary region by a lengthwise discontinuous cylindrical opaque layer, inwardly tangential to the folds. The ectoplasm lacks paraglycogen granules but has various organelles: apparently pinocytic vesicles against the wall between the folds, vesicles with myelinic membranes, opaque granules, a few mitochondria with blistered internal vesicles, and a few circular tubular fibers.
The superficial zone of the gregarine is supposed to contribute to nutrition, thru the extensive surface furnished by its folds and thru the pinocytic vesicles; but this alimentary intake is incomplete compared with that of the previously studied anterior region.
Insufficient mucus is discharged to account for locomotion. There are some circular ectoplasmic fibers, but locomotory myonemes are completely absent. However, there are deformations of the folds and corresponding waves that could account for locomotion by creeping or swimming. These movements of the folds might be due to the action of the contractile proteins and correspond with some of the layers seen in the wall.
The morphologic phenomena of the conjugation of Paramecium caudatum are analysed by transverse sectioning of couples at the level of the junction zone. This orientation allows exact determination of the adjacent surfaces (which strongly suggests the absence of a paroral cone) and their relation to the ciliary fields. The modifications of the outer pellicle are studied with the electron microscope. It is shown that cytoplasmic communications occur at the top of the ridges which limit the periciliary depressions. The kinetosomes remain apparently intact but cilia and trichocysts disappear. An active role by the latter organelles is suggested for the union of the two conjugants.
RESUME. La Microsporidie Nosema bombycis, Protozoaire parasite agent de la pébrine du ver à soie, a étéétudiée cytochimiquement à la fois en microscopie photonique et électronique.
Les examens ont porté sur la détection et la localisation des acides nucléiques (ADN et ARN), des polysaccharides, de la phosphatase acide, au cours des différents stades du développement dans les cellules de I'hôte (du schizonte à la spore).
Les principaux résultats concernent les observations relatives aux polysaccharides et à la phosphatase qui ne sont détectés qu'au stade de la spore et ne sont pas observés au stade du schizonte. Les polysaccharides sont présents au niveau du sac polaire, du filament polaire et sur la membrane cytoplasmique; la phosphatase acide est localisée au niveau du sac polaire, du filament polaire et dans la vacuole postérieure.
SYNOPSIS. Nosema bombycis, agent of pebrine disease of silkworm, was studied cytochemically, using both light and electron microscopy. Presence of nucleic acids (DNA and RNA), polysaccharides, and acid phosphatases was demonstrated and localization of these substances was determined in various stages of the parasite (from the schizont to the spore). DNA and RNA were detected in all these stages. Polysaccharides and acid phosphatase were found in the spore but not in the schizogonic stages. Polysaccharides were detected in the polar cap, the polar filament, and the limiting membrane of the cytoplasm of the spore. Acid phosphatase was found in the polar cap, the polar filament, and the posterior vacuole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.