High-throughput and virtual screening are widely used to discover novel leads for drug design. On examination, many screening hits appear non-drug-like: they act noncompetitively, show little relationship between structure and activity, and have poor selectivity. Attempts to develop these peculiar molecules into viable leads are often futile, and much time can be wasted on the characterization of these "phony" hits. Despite their common occurrence, the mechanism of action of these promiscuous molecules remains unknown. To investigate this problem, 45 diverse screening hits were studied. Fifteen of these were previously reported as inhibitors of various receptors, including beta-lactamase, malarial protease, dihydrofolate reductase, HIV Tar RNA, thymidylate synthase, kinesin, insulin receptor, tyrosine kinases, farnesyltransferase, gyrase, prions, triosephosphate isomerase, nitric oxide synthase, phosphoinositide 3-kinase, and integrase; 30 were from an in-house screening library of a major pharmaceutical company. In addition to their original targets, 35 of these 45 compounds were shown to inhibit several unrelated model enzymes. These 35 screening hits included compounds, such as fullerenes, dyes, and quercetin, that have repeatedly shown activity against diverse targets. When tested against the model enzymes, the compounds showed time-dependent but reversible inhibition that was dramatically attenuated by albumin, guanidinium, or urea. Surprisingly, increasing the concentration of the model enzymes 10-fold largely eliminated inhibition, despite a 1000-fold excess of inhibitor; a well-behaved competitive inhibitor did not show this behavior. One model to explain these observations was that the active form of the promiscuous inhibitors was an aggregate of many individual molecules. To test this hypothesis, light scattering and electron microscopy experiments were performed. The nonspecific inhibitors were observed to form particles of 30-400 nm diameter by both techniques. In control experiments, a well-behaved competitive inhibitor and an inactive dye-like molecule were not observed to form aggregates. Consistent with the hypothesis that the aggregates are the inhibitory species, the particle size and IC(50) values of the promiscuous inhibitors varied monotonically with ionic strength; a competitive inhibitor was unaffected by changes in ionic strength. Unexpectedly, aggregate formation appears to explain the activity of many nonspecific inhibitors and may account for the activity of many promiscuous screening hits. Molecules acting via this mechanism may be widespread in drug discovery screening databases. Recognition of these compounds may improve screening results in many areas of pharmaceutical interest.
beta-lactamases are the most widespread resistance mechanism to beta-lactam antibiotics, such as the penicillins and the cephalosporins. In an effort to combat these enzymes, a combination of stereoselective organic synthesis, enzymology, microbiology, and X-ray crystallography was used to design and evaluate new carboxyphenyl-glycylboronic acid transition-state analogue inhibitors of the class C beta-lactamase AmpC. The new compounds improve inhibition by over 2 orders of magnitude compared to analogous glycylboronic acids, with K(i) values as low as 1 nM. On the basis of the differential binding of different analogues, the introduced carboxylate alone contributes about 2.1 kcal/mol in affinity. This carboxylate corresponds to the ubiquitous C3(4)' carboxylate of beta-lactams, and this energy represents the first thermodynamic measurement of the importance of this group in molecular recognition by class C beta-lactamases. The structures of AmpC in complex with two of these inhibitors were determined by X-ray crystallography at 1.72 and 1.83 A resolution. These structures suggest a structural basis for the high affinity of the new compounds and provide templates for further design. The highest affinity inhibitor was 5 orders of magnitude more selective for AmpC than for characteristic serine proteases, such as chymotrypsin. This inhibitor reversed the resistance of clinical pathogens to the third generation cephalosporin ceftazidime; it may serve as a lead compound for drug discovery to combat bacterial resistance to beta-lactam antibiotics.
Third-generation cephalosporins are widely used beta-lactam antibiotics that resist hydrolysis by beta-lactamases. Recently, mutant beta-lactamases that rapidly inactivate these drugs have emerged. To investigate why third-generation cephalosporins are relatively stable to wild-type class C beta-lactamases and how mutant enzymes might overcome this, the structures of the class C beta-lactamase AmpC in complex with the third-generation cephalosporin ceftazidime and with a transition-state analogue of ceftazidime were determined by X-ray crystallography to 2.0 and 2.3 A resolution, respectively. Comparison of the acyl-enzyme structures of ceftazidime and loracarbef, a beta-lactam substrate, reveals that the conformation of ceftazidime in the active site differs from that of substrates. Comparison of the structures of the acyl-enzyme intermediate and the transition-state analogue suggests that ceftazidime blocks formation of the tetrahedral transition state, explaining why it is an inhibitor of AmpC. Ceftazidime cannot adopt a conformation competent for catalysis due to steric clashes that would occur with conserved residues Val211 and Tyr221. The X-ray crystal structure of the mutant beta-lactamase GC1, which has improved activity against third-generation cephalosporins, suggests that a tandem tripeptide insertion in the Omega loop, which contains Val211, has caused a shift of this residue and also of Tyr221 that would allow ceftazidime and other third-generation cephalosporins to adopt a more catalytically competent conformation. These structural differences may explain the extended spectrum activity of GC1 against this class of cephalosporins. In addition, the complexed structure of the transition-state analogue inhibitor (K(i) 20 nM) with AmpC reveals potential opportunities for further inhibitor design.
Epistasis is a key factor in evolution, since it determines which combinations of mutations provide adaptive solutions and which mutational pathways towards these solutions are accessible by natural selection. There is growing evidence for the pervasiveness of sign epistasis – a complete reversion of mutational effects, particularly in protein evolution, yet its molecular basis remains poorly understood. We describe the structural basis of sign epistasis between G238S and R164S, two adaptive mutations in the antibiotic-resistance enzyme TEM-1 β-lactamase. Separated by 10Å, these mutations initiate two separate trajectories towards increased hydrolysis rates and resistance towards second and third-cephalosporins antibiotics. Both mutations allow the enzyme’s active-site to adopt alternative conformations and accommodate the new antibiotics. By solving the corresponding set of crystal structures we found that whereas G238S induces discrete conformations, R164S causes local disorder. When combined, the mutations in 238 and 164 induce local disorder whereby nonproductive conformations that perturb the enzyme’s catalytic pre-organization dominate. Specifically, Asn170 that coordinates the deacylating water molecule is misaligned, in both the free and the inhibitor-bound double mutant. This local disorder is not restored by stabilizing, global suppressor mutations and thus leads to an evolutionary cul-de-sac. Conformational dynamism therefore underlines the reshaping potential of proteins structures and functions, but also limits protein evolvability because of the fragility of the interactions networks that maintain protein structures.
Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.