The emergence of class D β-lactamases with carbapenemase activity presents an enormous challenge to health practitioners, particularly with regard to the treatment of infections caused by Gram negative pathogens such as Acinetobacter baumanii. Unfortunately, class D β-lactamases with carbapenemase activity are resistant to β-lactamase inhibitors. To better understand the details of the how these enzymes bind and hydrolyze carbapenems, we have determined the structures of two deacylation-deficient variants (K84D and V130D) of the class D carbapenemase OXA-24 with doripenem bound as a covalent acyl-enzyme intermediate. Doripenem adopts essentially the same configuration in both OXA-24 variant structures, but varies significantly when compared to the non-carbapenemase class D member OXA-1/doripenem complex. The alcohol of the 6α hydroxyethyl moiety is directed away from the general base carboxy-K84, with implications for activation of the deacylating water. The tunnel formed by the Y112/M223 bridge in the apo form of OXA-24 is largely unchanged by the binding of doripenem. The presence of this bridge, however, causes the distal pyrrolidine/sulfonamide group to bind in a drastically different conformation compared to doripenem bound to OXA-1. The resulting difference in the position of the side-chain bridge sulfur of doripenem is consistent with the hypothesis that the tautomeric state of the pyrroline ring contributes to the different carbapenem hydrolysis rates of OXA-1 and OXA-24. These findings represent a snapshot of a key step in the catalytic mechanism of an important class D enzyme, and may be useful for the design of novel inhibitors.
beta-lactamases are the most widespread resistance mechanisms to beta-lactam antibiotics, and there is a pressing need for novel, non-beta-lactam drugs. A database of over 200,000 compounds was docked to the active site of AmpC beta-lactamase to identify potential inhibitors. Fifty-six compounds were tested, and three had K(i) values of 650 microM or better. The best of these, 3-[(4-chloroanilino)sulfonyl]thiophene-2-carboxylic acid, was a competitive noncovalent inhibitor (K(i) = 26 microM), which also reversed resistance to beta-lactams in bacteria expressing AmpC. The structure of AmpC in complex with this compound was determined by X-ray crystallography to 1.94 A and reveals that the inhibitor interacts with key active-site residues in sites targeted in the docking calculation. Indeed, the experimentally determined conformation of the inhibitor closely resembles the prediction. The structure of the enzyme-inhibitor complex presents an opportunity to improve binding affinity in a novel series of inhibitors discovered by structure-based methods.
Third-generation cephalosporins are widely used beta-lactam antibiotics that resist hydrolysis by beta-lactamases. Recently, mutant beta-lactamases that rapidly inactivate these drugs have emerged. To investigate why third-generation cephalosporins are relatively stable to wild-type class C beta-lactamases and how mutant enzymes might overcome this, the structures of the class C beta-lactamase AmpC in complex with the third-generation cephalosporin ceftazidime and with a transition-state analogue of ceftazidime were determined by X-ray crystallography to 2.0 and 2.3 A resolution, respectively. Comparison of the acyl-enzyme structures of ceftazidime and loracarbef, a beta-lactam substrate, reveals that the conformation of ceftazidime in the active site differs from that of substrates. Comparison of the structures of the acyl-enzyme intermediate and the transition-state analogue suggests that ceftazidime blocks formation of the tetrahedral transition state, explaining why it is an inhibitor of AmpC. Ceftazidime cannot adopt a conformation competent for catalysis due to steric clashes that would occur with conserved residues Val211 and Tyr221. The X-ray crystal structure of the mutant beta-lactamase GC1, which has improved activity against third-generation cephalosporins, suggests that a tandem tripeptide insertion in the Omega loop, which contains Val211, has caused a shift of this residue and also of Tyr221 that would allow ceftazidime and other third-generation cephalosporins to adopt a more catalytically competent conformation. These structural differences may explain the extended spectrum activity of GC1 against this class of cephalosporins. In addition, the complexed structure of the transition-state analogue inhibitor (K(i) 20 nM) with AmpC reveals potential opportunities for further inhibitor design.
Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.
Conspectus Despite 70 years of clinical use, β-lactam antibiotics still remain at the forefront of antimicrobial chemotherapy. The major challenge to these life-saving therapeutics is the presence of bacterial enzymes (i.e., β-lactamases) that can hydrolyze the β-lactam bond and inactivate the antibiotic. These enzymes can be grouped into 4 classes (A-D). Among the most genetically diverse are the class D β-lactamases. In this class are β-lactamases that can inactivate the entire spectrum of β- lactam antibiotics (penicillins, cephalosporins, and carbapenems). Class D β-lactamases are mostly found in Gram-negative bacteria such as Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Acinetobacter baumannii. The active-sites of class D β-lactamases contain an unusual N-carboxylated lysine post-translational modification. A strongly hydrophobic active-site helps create the conditions that allow the lysine to combine with CO2, and the resulting carbamate is stabilized by a number of hydrogen bonds. The carboxy-lysine plays a symmetric role in the reaction, serving as a general base to activate the serine nucleophile in the acylation reaction, and the deacylating water in the second step. There are more than 250 class D β-lactamases described, and the full set of variants shows remarkable diversity with regard to substrate binding and turnover. Narrow-spectrum variants are most effective against the earliest generation penicillins and cephalosporins such as ampicillin and cephalothin. Extended-spectrum variants (also known as extended-spectrum β-lactamases, ESBLs) pose a more dangerous clinical threat as they possess a small number of substitutions that allow them to bind and hydrolyze later generation cephalosporins that contain bulkier side-chain constituents (eg. cefotaxime, ceftazidime, and cefepime). Mutations that permit this versatility seem to cluster in the area surrounding an active-site tryptophan resulting in a widened active-site to accommodate the oxyimino side-chains of these cephalosporins. More concerning are the class D β-lactamases that hydrolyze clinically-important carbapenem β-lactam drugs (e.g., imipenem). Whereas carbapenems irreversibly acylate and inhibit narrow- spectrum β-lactamases, class D carbapenemases are able to recruit and activate a deacylating water. The rotational orientation of the C6 hydroxyethyl group found on all carbapenem antibiotics likely plays a role in whether the deacylating water is effective or not. Inhibition of class D β-lactamases is a current challenge. Commercially available inhibitors that are active against other classes of β-lactamases are ineffective against class D enzymes. On the horizon are several compounds, consisting of both β-lactam derivatives and non-β-lactams, that have the potential of providing novel leads to design new mechanism-based inactivators that are effective against the class D enzymes. Several act synergistically when given in combination with a β-lactam antibiotic, and others show a unique mechanism of inhibition that is d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.