Spore germination of five globally threatened fern species [Culcita macrocarpa C. Presl, Dryopteris aemula (Aiton) O. Kuntze, D. corleyi Fraser-Jenkins, D. guanchica Gibby and Jermy and Woodwardia radicans (L.) Sm.] was determined after 1, 6 or 12 months of storage in glass vials (dry storage) or on agar (wet storage) at -20, 5 or 20 degrees C. In all species, storage technique, storage temperature and the technique-temperature interaction all had a significant effect on germination percentage. In most cases, the germination percentage was best maintained by wet storage at 5 or 20 degrees C. In the case of the hygrophilous species C. macrocarpa and W. radicans, 6 or 12 months' dry storage killed most spores. Only Woodwardia radicans germinated in the dark during wet storage at 20 degrees C. Wet storage at 5 degrees C prevented dark germination, and reduced bacterial and fungal contamination. Wet storage at -20 degrees C killed all or most spores in all species. In the three Dryopteris species, the differences among the storage conditions tested were smaller than in C. macrocarpa and W. radicans, and the decline in spore viability during storage was less marked, with high germination percentages being observed after 12 months of dry storage at all three temperatures. Dry storage, which has lower preparation time and space requirements than wet storage, was generally more effective at the lower temperatures (-20 or 5 degrees C).
The gametophytic generation of the allotetraploid Polystichum aculeatum and its diploid parents, Polystichum setiferum and Polystichum lonchitis, was studied in order to compare their morphology, gametangial ontogeny, and breeding system. Six populations, two of each species, were selected for spore collection. Germination, gender expression, and antheridiogen experiments were established on agar and soil culture media. Germination percentage in the tetraploid was higher, and the only morphological difference was found in the length of marginal hairs that were also longer in P. aculeatum. Gender expression in the allotetraploid was a mixture of the diploids. Differences in gender expression of both diploids, with many male prothalli in P. lonchitis and many female ones in P. setiferum, may favor the formation of the hybrid that originated the allotetraploid. An antheridiogen system was observed in both P. aculeatum and P. setiferum, and each species responded to one another's antheridiogen. In contrast, exudates from P. lonchitis failed to induce precocious maleness within the species but did induce an antheridiogen response in gametophytes of P. setiferum.
Environmental sex determination is present in several animal and plant lineages, in which gender depends on diverse factors such as temperature, light and water availability. This study examines effects of water availability and pheromones on the production of female and male organs by three fern species adapted to dry habitats. Isolated individuals become first female and then bisexual, irrespective of the degree of soil moisture, and, consequently, may self-fertilize. However, female individuals release pheromones that induce maleness in nearby individuals, thus favouring cross-fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.