Hydrogen bonding in ionic liquids based on the 1-(2'-hydroxylethyl)-3-methylimidazolium cation ([C₂OHmim](+)) and various anions ([A](-)) of differing H-bond acceptor strength, viz. hexafluorophosphate [PF6](-), tetrafluoroborate [BF₄](-), bis(trifluoromethanesulfonimide) [Tf₂N](-), trifluoromethylsulfonate [OTf](-), and trifluoroacetate [TFA](-), was studied by a range of spectroscopic and computational techniques and, in the case of [C₂OHmim][PF6], by single crystal X-ray diffraction. The first quantitative estimates of the energy (E(HB)) and the enthalpy (-ΔH(HB)) of H-bonds in bulk ILs were obtained from a theoretical analysis of the solid-state electron-density map of crystalline [C₂OHmim][PF6] and an analysis of the IR spectra in crystal and liquid samples. E(HB) for OH···[PF6](-) H-bonds amounts to ~3.4-3.8 kcal·mol(-1), whereas weaker H-bonds (2.8-3.1 kcal·mol(-1)) are formed between aromatic C2H group of imidazolium ring and the [PF6](-) anion. The enthalpy of the OH···[A](-) H-bonds follows the order: [PF6] (2.4 kcal·mol(-1)) < [BF₄] (3.3 kcal·mol(-1)) < [Tf₂N] (3.4 kcal·mol(-1)) < [OTf] (4.7 kcal·mol(-1)l) < [TFA] (6.2 kcal·mol(-1)). The formation of aggregates of self-associated [C₂OHmim](+) cations is present in liquid [C₂OHmim][PF6], [C₂OHmim][BF₄], and [C₂OHmim][Tf₂N], with the energy of the OH···OH H-bonds amounting to ~6 kcal·mol(-1). Multiple secondary interactions in the bulk ILs influence their structure, vibrational spectra, and H-bond strength. In particular, these interactions can blue-shift the stretching frequencies of the CH groups of the imidazolium ring in spite of red-shifting CH···[A](-) H-bonds. They also weaken the H-bonding in the IL relative to the isolated ion pairs, with these anticooperative effects amounting to ca. 50% of the E(HB) value.
A series of cross-linked ionic polymers based on styrene-functionalized imidazolium salts with chloride, hexafluorophosphate, or tetrafluoroborate counter anions have been prepared and characterized using a range of analytical and spectroscopic techniques and electron microscopy. The polymer with the chloride anion is an efficient catalyst for the cycloaddition of carbon dioxide with epoxides to afford cyclic carbonates. The cross-linked polymer is insoluble in organic solvents and is highly stable and therefore can be easily recycled and reused.
The synthesis, characterization, photophysical and biological properties of 13 new conjugate coumarin-diruthenium(II)•arene complexes against Toxoplasma gondii are presented. For all conjugate organometallic unit/coumarins, an almost complete loss of fluorescence efficacy was observed. However, the nature of the fluorophore, the type of bonding, the presence and length of a linker between the coumarin dye and the ruthenium(II) moiety, and the number of dye units influenced their biological properties. The in vitro activity against a trans-genic T. gondii strain grown in human foreskin fibroblasts (HFF) leads to IC 50 values for T. gondii β-gal from 105 to 735 nM. Of note is that nine compounds displayed lower IC 50 than the standard drug pyrimethamine. One compound applied at its IC 50 did not affect B-cell proliferation but had an impact on Tcell proliferation in murine splenocyte cultures. Transmission electron microscopy of T. gondii β-gal-infected HFF showed that treatment predominantly affected the parasites' mitochondrion.
A ruthenium(II)-arene complex with a perfluoroalkyl-ligand was found to display remarkable selectivity toward cancer cells. IC50 values on several cancer cell lines are in the range of 25-45 μM, and no cytotoxic effect was observed on nontumorigenic (HEK-293) cells at concentrations up to 500 μM (the maximum concentration tested). Consequently, this complex was used as the basis for the development of a number of related derivatives, which were screened in cancerous and noncancerous cell lines. The lead compound was then evaluated in vivo for antiangiogenic activity in the CAM model and in a xenografted ovarian carcinoma tumor (A2780) grown on the CAM. A 90% reduction in the tumor growth was observed.
Application of mild hyperthermia can increase the cytotoxicity of anticancer drugs in tumour cells. In this report, we describe low molecular weight thermoactive ruthenium-based drugs with fluorous chains that are selectively triggered by mild hyperthermia. The organometallic complexes were prepared, characterized, and evaluated for their in vitro cytotoxicity against a panel of human cancer cell lines and non-cancerous immortalized cells. The compounds show considerable chemo-thermal selectivity towards cancer cells (ca. 5 mM versus >500 mM for healthy cells) for the compound with the longest fluorous chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.