Butyric acid (BA) is a short-chain fatty acid (SCFA) produced by gut bacteria in the colon. We hypothesized that colon-derived BA may affect hemodynamics. Arterial blood pressure (BP) and heart rate (HR) were recorded in anesthetized, male, 14-week-old Wistar rats. A vehicle, BA, or 3-hydroxybutyrate, an antagonist of SCFA receptors GPR41/43 (ANT) were administered intravenously (IV) or into the colon (IC). Reactivity of mesenteric (MA) and gracilis muscle (GMA) arteries was tested ex vivo. The concentration of BA in stools, urine, portal, and systemic blood was measured with liquid chromatography coupled with mass spectrometry. BA administered IV decreased BP with no significant effect on HR. The ANT reduced, whereas L-NAME, a nitric oxide synthase inhibitor, did not affect the hypotensive effect of BA. In comparison to BA administered intravenously, BA administered into the colon produced a significantly longer decrease in BP and a decrease in HR, which was associated with a 2–3-fold increase in BA colon content. Subphrenic vagotomy and IC pretreatment with the ANT significantly reduced the hypotensive effect. Ex vivo, BA dilated MA and GMA. In conclusion, an increase in the concentration of BA in the colon produces a significant hypotensive effect which depends on the afferent colonic vagus nerve signaling and GPR41/43 receptors. BA seems to be one of mediators between gut microbiota and the circulatory system.Electronic supplementary materialThe online version of this article (10.1007/s00424-019-02322-y) contains supplementary material, which is available to authorized users.
An increased blood trimethylamine N-oxide (TMAO) has emerged as a marker of cardiovascular mortality, however, the mechanisms of the increase are not clear. We evaluated if hypertension was associated with changes in the colon permeability to trimethylamine (TMA), a TMAO precursor. We did experiments on male, 24-26-week-old normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and SHR treated with enalapril, an antihypertensive drug (SHR-E). To check the colon permeability and liver TMA clearance, blood was collected from the portal vein and hepatic veins confluence, at baseline and after the intracolonic administration of TMA. Arterial blood pressure (BP) and intestinal blood flow (IBF) recordings and histological assessment of the colon were performed. SHR showed an increased gut-blood barrier permeability to TMA. Namely, at baseline SHR had a higher BP and portal blood TMA, but a lower IBF than WKY. After the intracolonic administration of TMA, SHR had a significantly higher portal blood TMA and higher TMA liver clearance than WKY. In SHR the arteriolar walls of the colon mucosa were significantly thicker than in WKY. Furthermore, SHR showed a significant decrease in the height of the mucosa. In contrast, SHR-E had lower portal blood TMA, lower BP and smaller thickness of arteriolar walls, but higher IBF than SHR, which indicates improved function of the gut-blood barrier in SHR-E. All groups had similar immunostaining of occludin and zonula occludens-1, markers of tight junctions. In conclusion, hypertensive rats show an increased permeability of the colon to TMA, which is accompanied by morphological and hemodynamic alterations in the colon. Therefore, cardiovascular diseases may be characterized by an increased permeability of the gut-blood barrier to bacterial metabolites such as TMA.
Several studies have suggested negative effects of trimethylamine oxide (TMAO) on the circulatory system. However, a number of studies have shown protective functions of TMAO, a piezolyte and osmolyte, in animals exposed to high hydrostatic and/or osmotic stress. We evaluated the effects of TMAO treatment on the development of hypertension and its complications in male spontaneously hypertensive rats (SHRs) maintained on water (SHR-Water) and SHRs drinking TMAO water solution from weaning (SHR-TMAO). Wistar-Kyoto (WKY) rats were used as normotensive controls to discriminate between age-dependent and hypertension-dependent changes. Telemetry measurements of blood pressure were performed in rats between the 7th and 16th weeks of life. Anesthetized rats underwent echocardiographic, electrocardiographic, and direct left ventricular end-diastolic pressure (LVEDP) measurements. Hematoxylin and eosin as well as van Gieson staining for histopathological evaluation were performed. Plasma TMAO measured by chromatography coupled with mass spectrometry was significantly higher in the SHR-Water group compared with the WKY group (~20%). TMAO treatment increased plasma TMAO by four- to fivefold and did not affect the development of hypertension in SHRs. Sixteen-week-old rats in the SHR-Water and SHR-TMAO groups (12-wk TMAO treatment) showed similar blood pressures, angiopathy, and cardiac hypertrophy. However, the SHR-TMAO group had lower plasma NH2-terminal pro-B-type natriuretic peptide, LVEDP, and cardiac fibrosis. In contrast to age-matched WKY rats, 60-wk-old SHRs showed hypertensive angiopathy and heart failure with preserved ejection fraction. Compared with the SHR-Water group, the SHR-TMAO group (56-wk TMAO treatment) showed significantly lower plasma NH2-terminal pro-B-type natriuretic peptide and vasopressin, significantly lower LVEDP, and cardiac fibrosis. In conclusion, a four- to fivefold increase in plasma TMAO does not exert negative effects on the circulatory system. In contrast, increased dietary TMAO seems to reduce diastolic dysfunction in pressure-overloaded hearts in rats. NEW & NOTEWORTHY Chronic, low-dose trimethylamine oxide (TMAO) treatment that increases plasma TMAO by four- to fivefold reduces plasma NH2-terminal pro-B-type natriuretic peptide and vasopressin, left ventricular end-diastolic pressure, and cardiac fibrosis in pressure-overloaded hearts in hypertensive rats. Our study provides evidence that a moderate increase in plasma TMAO does not have a negative effect on the circulatory system. In contrast, increased dietary TMAO seems to reduce diastolic dysfunction in the pressure-overloaded heart.
Supplemental Digital Content is available in the text
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.