Interspecific killing is a key determinant of the abundances and distributions of carnivores, their prey, and nonprey community members. Similarity of body size has been proposed to lead competitors to seek similar prey, which increases the likelihood of interference encounters, including lethal ones. We explored the influence of body size, diet, predatory habits, and taxonomic relatedness on interspecific killing. The frequency of attacks depends on differences in body size: at small and large differences, attacks are less likely to occur; at intermediate differences, killing interactions are frequent and related to diet overlap. Further, the importance of interspecific killing as a mortality factor in the victim population increases with an increase in body size differences between killers and victims. Carnivores highly adapted to kill vertebrate prey are more prone to killing interactions, usually with animals of similar predatory habits. Family-level taxonomy influences killing interactions; carnivores tend to interact more with species in the same family than with species in different families. We conclude that although resource exploitation (diet), predatory habits, and taxonomy are influential in predisposing carnivores to attack each other, relative body size of the participants is overwhelmingly important. We discuss the implications of interspecific killing for body size and the dynamics of geographic ranges.
The spatial relationship between predator and prey is often conceptualized as a behavioral response race, in which prey avoid predators while predators track prey. Limiting habitat types can create spatial anchors for prey or predators, influencing the likelihood that the predator or prey response will dominate. Joint spatial anchors emerge when predator and prey occupy similar feeding habitat domains and risk and reward become spatially conflated, confusing predictions of which player will win the space race. These spatial dynamics of risk‐foraging trade‐offs are often obscured by habitat heterogeneity and community complexity in large vertebrate systems, fueling ambiguity regarding the generality of predictions from predator–prey theory. To test how habitat distribution influences the predator–prey space race, we examine correlation in puma and vicuña habitat selection and space use at two sites, one of which generates a distinct risk–foraging trade‐off at a joint spatial anchor. The distribution of vegetation, which serves as both forage for vicuñas and stalking cover for pumas, differs between the sites; the llano contains a single central meadow that acts as a joint spatial anchor, while the canyon is characterized by more heterogeneous vegetation. Puma–vicuña habitat selection correlation was positive in the llano and negative in the canyon, and similarly, utilization distributions were more strongly correlated in the llano than the canyon. Vicuña locations occurred at higher values of puma habitat selection and utilization in the llano than in the canyon. Similarly, puma locations in the llano occurred at higher values of vicuña habitat selection and utilization than in the canyon. Although pumas consistently selected for and utilized vegetative and topographic cover regardless of habitat distribution, vicuñas only selected against vegetation in the heterogeneous canyon site, reducing spatial correlation with pumas. Our work suggests a joint spatial anchor favors pumas in the space race due to the inability for vicuñas to avoid crucial foraging habitat. The outcome of the predator–prey space race appears to be strongly informed by the distribution of habitat, whereby corresponding predictability of predator and prey favors predators in the spatial game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.