In this work we propose a control design method for single-link flexible manipulators. The proposed technique is based on the Integral Resonant Control (IRC) scheme. The controller consists of two nested feedback loops. The inner loop controls the joint angle and makes the system robust to joint friction. The outer loop, which is based on the IRC technique, damps the vibration and makes the system robust to the unmodeled dynamics (spill-over) and resonance frequency variations due to changes in the payload. The objectives of this work are: (i) to demonstrate the advantages of IRC, which is a high performance controller design methodology for flexible structures with collocated actuator-sensor pairs, and (ii) to illustrate its capability of achieving precise end-point (tip) positioning with effective vibration suppression when applied to a typical flexible manipulator. The theoretical formulation of the proposed control scheme, a detailed stability analysis and experimental results obtained on a flexible manipulator are presented.
The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have therefore developed an interactive annotation tool, EXTRACT, which helps curators identify and extract standard-compliant terms for annotation of metagenomic records and other samples. Behind its web-based user interface, the system combines published methods for named entity recognition of environment, organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15–25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.