Additional measures of in situ water quality monitoring in natural environments can be obtained through remote sensing because certain elements in water modify its spectral behavior. One of the indicators of water quality is the presence of algae, and the aim of this study was to propose an alternative method for the quantification of chlorophyll in water by correlating spectral data, infrared images, and limnology data. The object of study was an artificial lake located at Unisinos University, São Leopoldo/RS, Brazil. The area has been mapped with a modified NGB (near infrared (N), green (G) and blue (B)) camera coupled to an unmanned aerial vehicle (UAV). From the orthorectified and georeferenced images, a modified normalized difference vegetation index (NDVImod) image has been generated. Additionally, 20 sampling points have been established on the lake. At these points, in situ spectral analysis with a spectroradiometer has been performed, and water samples have been collected for laboratory determination of chlorophyll concentrations. The correlation resulted in two models. The first model, based on the multivariate analysis of spectral data, and the second model, based on polynomial equations from NDVI, had coefficients of determination (R 2 ) of 0.86 and 0.51, respectively. This study confirmed the applicability of remote sensing for water resource management using UAVs, which can be characterized as a quick and easy methodology.
Water quality monitoring through remote sensing with UAVs is best conducted using multispectral sensors; however, these sensors are expensive. We aimed to predict multispectral bands from a low-cost sensor (R, G, B bands) using artificial neural networks (ANN). We studied a lake located on the campus of Unisinos University, Brazil, using a low-cost sensor mounted on a UAV. Simultaneously, we collected water samples during the UAV flight to determine total suspended solids (TSS) and dissolved organic matter (DOM). We correlated the three bands predicted with TSS and DOM. The results show that the ANN validation process predicted the three bands of the multispectral sensor using the three bands of the low-cost sensor with a low average error of 19%. The correlations with TSS and DOM resulted in R2 values of greater than 0.60, consistent with literature values.
The concentration of suspended solids in water is one of the quality parameters that can be recovered using remote sensing data. This paper investigates the data obtained using a sensor coupled to an unmanned aerial vehicle (UAV) in order to estimate the concentration of suspended solids in a lake in southern Brazil based on the relation of spectral images and limnological data. The water samples underwent laboratory analysis to determine the concentration of total suspended solids (TSS). The images obtained using the UAV were orthorectified and georeferenced so that the values referring to the near, green, and blue infrared channels were collected at each sampling point to relate with the laboratory data. The prediction of the TSS concentration was performed using regression analysis and artificial neural networks. The obtained results were important for two main reasons. First, although regression methods have been used in remote sensing applications, they may not be adequate to capture the linear and/or non-linear relationships of interest. Second, results show that the integration of UAV in the mapping of water bodies together with the application of neural networks in the data analysis is a promising approach to predict TSS as well as their temporal and spatial variations.
The photogrammetry techniques are known to be accessible due to its low cost, while the geometric accuracy is a key point to ensure that models obtained from photogrammetry are a feasible solution. This work evaluated the discrepancies in 3D (DSM) and 2D (orthomosaic) models obtained from photogrammetry using control points (GCPs) near a reflective/refractive area (water body), where the objective was to evaluate these points, analysing the independence, normality and randomness and other basic statistic. The images were obtained with a 16 MP Canon PowerShot ELPH 110S with a modified NiR band and a multispectral sensor Parrot Sequoia, both embedded in a hex-rotor UAV in flight over the Unisinos University's artificial lake in the city of São Leopoldo, Rio Grande do Sul, Brazil. Due the distribution of the data found to be not normal, we applied non-parametric tests Chebyshev's Theorem and the Mann-Whitney's U test, where it showed that the values obtained from Sequoia DSM presented significant similarities with the values obtained from the GCP's considering the confidence level of 95%; however, this was not confirmed for the model generated from a Canon camera, showing that we found better results using the multispectral Parrot Sequoia.
In Petroleum Geology, to assess the hydrocarbon generation potential in source rocks involves the determination of the kerogen type by some destructive method. The usage of such methods is a bottleneck in the process because it is time-consuming, requires specialized tools and personnel, and ends up destroying the rock sample, so it is not possible to do any posterior analysis. This study presents an alternative method for determination of the kerogen type that is fast and non-destructive using hyperspectral data and machine learning techniques. The method is validated using five distinct supervised learning algorithms that were applied to spectral data collected in rock samples from Taubaté Basin, Brazil, of an outcrop whose rocks have a wide range of hydrocarbon generation potential. Cores and samples were collected from the outcrop and had their kerogen type determined by geochemical analyses performed in the laboratory. The robustness of the method is evaluated in two distinct experiments. In the first one, the hyperspectral dataset was collected using a non-imaging spectroradiometer; in the second one, the method uses non-imaging hyperspectral data as training and is tested in hyperspectral images collected. In both experiments, the method was able to establish a relationship between selected spectral features and the kerogen type of the source rocks sampled. The results obtained in this paper are prospective for non-destructive classification of kerogen type (and, consequently, the hydrocarbon generation potential), since most of the models generated achieved accuracy above 0.8 in the validation step and 0.75 in the test step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.