Oestrogen receptors can mediate rapid activation of cytoplasmic signalling cascades by recruiting Src and PI3K. However, the involvement of this pathway in breast cancer remains poorly defined. We have previously shown that methylation of ERα is required for the formation of the ERα/Src/PI3K complex and that ERα is hypermethylated in a subset of breast cancers. Here, we used Proximity Ligation Assay to demonstrate that this complex is present in the cytoplasm of breast cancer cell lines as well as formalin-fixed, paraffin-embedded tumours. Of particular interest, the analysis of 175 breast tumours showed that overexpression of this complex in a subset of breast tumours correlates to the activation of the downstream effector Akt. Survival analysis revealed that high expression of this complex is an independent marker of poor prognosis and associated with reduced disease-free survival. Our data introduces the new concept that the rapid oestrogen pathway is operative in vivo. It also provides a rationale for patient stratification defined by the activation of this pathway and the identification of target therapies.
Objectives
The accumulation of tumor‐associated macrophages (TAMs) is correlated with poor clinical outcome, but the mechanisms governing their differentiation from circulating monocytes remain unclear in humans.
Methods
Using multicolor flow cytometry, we evaluated TAMs phenotype in 93 breast cancer (BC) patients. Furthermore, monocytes from healthy donors were cultured in the presence of supernatants from dilacerated primary tumors to investigate their differentiation into macrophages (MΦ) in vitro. Additionally, we used transcriptomic analysis to evaluate BC patients’ blood monocytes profiles.
Results
We observed that high intra‐tumor CD163‐expressing TAM density is predictive of reduced survival in BC patients. In vitro, M‐CSF, TGF‐β and VEGF from primary tumor supernatants skewed the differentiation of healthy donor blood monocytes towards CD163highCD86lowIL‐10high M2‐like MΦ that strongly suppressed CD4+ T‐cell expansion via PD‐L1 and IL‐10. In addition, blood monocytes from about 40% of BC patients displayed an altered response to in vitro stimulation, being refractory to type‐1 MΦ (M1‐MΦ) differentiation and secreting higher amounts of immunosuppressive, metastatic‐related and angiogenic cytokines. Aside from showing that monocyte transcriptome is significantly altered by the presence of BC, we also demonstrated an overall metabolic de‐activation in refractory monocytes of BC patients. In contrast, monocytes from sensitive BC patients undergoing normal M1‐MΦ differentiation showed up‐regulation of IFN‐response genes and had no signs of metabolic alteration.
Conclusion
Altogether, our results suggest that systemic factors skew BC patient blood monocytes towards a pro‐metastatic profile, resulting in the accumulation of further polarised CD163high TAMs resembling type‐2 MΦ (M2‐MΦ) in the local BC microenvironment. These data indicate that monitoring circulating monocytes in BC patients may provide an indication of early systemic alterations induced by cancer and, thus, be instrumental in the development of improved personalised immunotherapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.