Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.
The white-footed mouse (Peromyscus leucopus) is an important reservoir host for Borrelia burgdorferi, the pathogen responsible for Lyme disease, and its distribution is expanding northward. We used an Ecological Niche Factor Analysis to identify the climatic factors associated with the distribution shift of the white-footed mouse over the last 30 years at the northern edge of its range, and modeled its current and potential future (2050) distributions using the platform BIOMOD. A mild and shorter winter is favouring the northern expansion of the white-footed mouse in Québec. With more favorable winter conditions projected by 2050, the distribution range of the white-footed mouse is expected to expand further northward by 3° latitude. We also show that today in southern Québec, the occurrence of B. burgdorferi is associated with high probability of presence of the white-footed mouse. Changes in the distribution of the white-footed mouse will likely alter the geographical range of B. burgdorferi and impact the public health in northern regions that have yet to be exposed to Lyme disease.
In its invasive range in Australia, the European rabbit threatens the persistence of native flora and fauna and damages agricultural production. Understanding its distribution and ecological niche is critical for developing management plans to reduce populations and avoid further biodiversity and economic losses. We developed an ensemble of species distribution models (SDMs) to determine the geographic range limits and habitat suitability of the rabbit in Australia. We examined the advantage of incorporating data collected by citizens (separately and jointly with expert data) and explored issues of spatial biases in occurrence data by implementing different approaches to generate pseudo‐absences. We evaluated the skill of our model using three approaches: cross‐validation, out‐of‐region validation, and evaluation of the covariate response curves according to expert knowledge of rabbit ecology. Combining citizen and expert occurrence data improved model skill based on cross‐validation, spatially reproduced important aspects of rabbit ecology, and reduced the need to extrapolate results beyond the studied areas. Our ensemble model projects that rabbits are distributed across approximately two thirds of Australia. Annual maximum temperatures >25°C and annual minimum temperatures >10°C define, respectively, the southern and northern most range limits of its distribution. In the arid and central regions, close access to permanent water (≤~ 0.4 km) and reduced clay soil composition (~20%–50%) were the major factors influencing the probability of occurrence of rabbits. Synthesis and applications. Our results show that citizen science data can play an important role in managing invasive species by providing missing information on occurrences in regions not surveyed by experts because of logistics or financial constraints. The additional sampling effort provided by citizens can improve the capacity of SDMs to capture important elements of a species ecological niche, improving the capacity of statistical models to accurately predict the geographic range of invasive species.
With ongoing introductions into Australia since the 1700s, the European rabbit (Oryctolagus cuniculus) has become one of the most widely distributed and abundant vertebrate pests, adversely impacting Australia's biodiversity and agroeconomy. To understand the population and range dynamics of the species and its impacts better, occurrence and abundance data have been collected by researchers and citizens from sites covering a broad spectrum of climatic and environmental conditions in Australia. The lack of a common and accessible repository for these data has, however, limited their use in determining important spatiotemporal drivers of the structure and dynamics of the geographical range of rabbits in Australia. To meet this need, we created the Australian National Rabbit Database, which combines more than 50 yr of historical and contemporary survey data collected from throughout the range of the species in Australia. The survey data, obtained from a suite of complementary monitoring methods, were combined with high‐resolution weather, climate, and environmental information, and an assessment of data quality. The database provides records of rabbit occurrence (689,265 records) and abundance (51,241 records, >120 distinct sites) suitable for identifying the spatiotemporal drivers of the rabbit's distribution and for determining spatial patterns of variation in its key life‐history traits, including maximum rates of population growth. Because all data are georeferenced and date stamped, they can be coupled with information from other databases and spatial layers to explore the potential effects of rabbit occurrence and abundance on Australia's native wildlife and agricultural production. The Australian National Rabbit Database is an important tool for understanding and managing the European rabbit in its invasive range and its effects on native biodiversity and agricultural production. It also provides a valuable resource for addressing questions related to the biology, success, and impacts of invasive species more generally. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper.
Tick-borne zoonoses are emerging globally due to changes in climate and land use.While the zoonotic threats associated with ticks are well studied elsewhere, in Australia, the diversity of potentially zoonotic agents carried by ticks and their significance to human and animal health is not sufficiently understood. To this end, we used untargeted metatranscriptomics to audit the prokaryotic, eukaryotic and viral biomes of questing ticks and wildlife blood samples from two urban and rural sites in New South Wales, Australia. Ixodes holocyclus and Haemaphysalis bancrofti were the main tick species collected, and blood samples from Rattus rattus, Rattus fuscipes, Perameles nasuta and Trichosurus vulpecula were also collected and screened for tick-borne microorganisms using metatranscriptomics followed by conventional targeted PCR to identify important microbial taxa to the species level. Our analyses identified 32 unique tick-borne taxa, including 10 novel putative species. Overall, a wide range of tick-borne microorganisms were found in questing ticks including haemoprotozoa such as Babesia, Theileria, Hepatozoon and Trypanosoma spp., bacteria such as Borrelia, Rickettsia, Ehrlichia, Neoehrlichia and Anaplasma spp., and numerous viral taxa including Reoviridiae (including two coltiviruses) and a novel Flaviviridae-like jingmenvirus. Of note, a novel hard tick-borne relapsing fever Borrelia sp. was identified in questing H. bancrofti ticks which is closely related to, but distinct from, cervid-associated Borrelia spp. found throughout Asia. Notably, all tick-borne microorganisms were phylogenetically unique compared to their relatives found outside Australia, and no foreign tick-borne human pathogens such as Borrelia burgdorferi s.l. or Babesia microti were found. This work adds to the growing literature demonstrating that Australian ticks harbour a unique and endemic microbial fauna, including potentially zoonotic agents which should be further studied to determine their relative risk to human and animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.