Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.
The white-footed mouse (Peromyscus leucopus) is an important reservoir host for Borrelia burgdorferi, the pathogen responsible for Lyme disease, and its distribution is expanding northward. We used an Ecological Niche Factor Analysis to identify the climatic factors associated with the distribution shift of the white-footed mouse over the last 30 years at the northern edge of its range, and modeled its current and potential future (2050) distributions using the platform BIOMOD. A mild and shorter winter is favouring the northern expansion of the white-footed mouse in Québec. With more favorable winter conditions projected by 2050, the distribution range of the white-footed mouse is expected to expand further northward by 3° latitude. We also show that today in southern Québec, the occurrence of B. burgdorferi is associated with high probability of presence of the white-footed mouse. Changes in the distribution of the white-footed mouse will likely alter the geographical range of B. burgdorferi and impact the public health in northern regions that have yet to be exposed to Lyme disease.
BackgroundDomestic cats play a key role in the epidemiology of the parasite Toxoplasma gondii by excreting environmentally-resistant oocysts that may infect humans and other warm-blooded animals. The dynamics of Toxoplasma gondii seroconversion, used as a proxy for primo-infection dynamics, was investigated in five cat populations living on farms.MethodsSerological tests on blood samples from cats were performed every three months over a period of two years, for a total of 400 serological tests performed on 130 cats. Variations in seroconversion rates and associated factors were investigated using a multi-event capture-recapture modelling approach that explicitly accounted for uncertainties in cat age and serological status.ResultsSeroprevalence varied between farms, from 15 to 73%, suggesting differential exposure of cats to T. gondii. In farms with high exposure, cats could become infected before reaching the age of six months. Seroconversion rates varied from 0.42 to 0.96 seroconversions per cat per year and were higher in autumn and winter than in spring and summer.ConclusionOur results suggest inter-farm and seasonal variations in the risks of exposure to T. gondii oocysts for humans and livestock living on farms. The paper also discusses the role of young cats in the maintenance of environmental contamination by T. gondii oocysts on farms.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2834-4) contains supplementary material, which is available to authorized users.
If validated beforehand, the analysis of dried blood on blotting paper (BP samples) is very useful for monitoring free-ranging animals. We aimed to validate this method for the detection of antibodies against Toxoplasma gondii in stray cats. We used the modified agglutination test (MAT) in 199 sample pairs of sera and BP samples from 54, 39, 56, and 50 cats trapped during four periods in five dairy farms. Screening was at 1:6, 1:12, and 1:24 dilutions. The cut-off value was at MAT titre ≥ 24, but MAT titre ≥ 12 was also considered for BP samples that often have a higher dilution level. Depending on the period, sample type, and cut-off value, sensitivity of the analysis of the BP sample vs. serum varied from 87.1% to 100% and specificity ranged from 72.22% to 100%. The concordance values and Kappa coefficient showed a substantial to excellent agreement between the results of the two methods, whatever the cut-off value. These findings quantifiably validate the use of MAT on BP samples for the detection of antibodies to T. gondii in stray cats, but we recommend expressing results from BP samples with several cut-off values as the MAT titres tend to be lower than those of sera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.