Prepare-and-measure (P&M) quantum networks are the basic building blocks of quantum communication and cryptography. These networks crucially rely on non-orthogonal quantum encodings to distribute quantum correlations, thus enabling superior communication rates and informationtheoretic security. Here, we present a computational toolbox that is able to efficiently characterise the set of input-output probability distributions for any discrete-variable P&M quantum network, assuming only the inner-product information of the quantum encodings. Our toolbox is thus highly versatile and can be used to analyse a wide range of quantum network protocols, including those that employ infinite-dimensional quantum code states. To demonstrate the feasibility and efficacy of our toolbox, we use it to reveal new results in multipartite quantum distributed computing and quantum cryptography. Taken together, these findings suggest that our method may have implications for quantum network information theory and the development of new quantum technologies. arXiv:1803.04796v2 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.