Prepare-and-measure (P&M) quantum networks are the basic building blocks of quantum communication and cryptography. These networks crucially rely on non-orthogonal quantum encodings to distribute quantum correlations, thus enabling superior communication rates and informationtheoretic security. Here, we present a computational toolbox that is able to efficiently characterise the set of input-output probability distributions for any discrete-variable P&M quantum network, assuming only the inner-product information of the quantum encodings. Our toolbox is thus highly versatile and can be used to analyse a wide range of quantum network protocols, including those that employ infinite-dimensional quantum code states. To demonstrate the feasibility and efficacy of our toolbox, we use it to reveal new results in multipartite quantum distributed computing and quantum cryptography. Taken together, these findings suggest that our method may have implications for quantum network information theory and the development of new quantum technologies. arXiv:1803.04796v2 [quant-ph]
Bipartite and multipartite entangled states are basic ingredients for constructing quantum networks and their accurate verification is crucial to the functioning of the networks, especially for untrusted networks. Here we propose a simple approach for verifying the Bell state in an untrusted network in which one party is not honest. Only local projective measurements are required for the honest party. It turns out each verification protocol is tied to a probability distribution on the Bloch sphere and its performance has an intuitive geometric meaning. This geometric picture enables us to construct the optimal and simplest verification protocols, which are also very useful to detecting entanglement in the untrusted network. Moreover, we show that our verification protocols can achieve almost the same sample efficiencies as protocols tailored to standard quantum state verification. Furthermore, we establish an intimate connection between the verification of Greenberger–Horne–Zeilinger states and the verification of the Bell state. By virtue of this connection we construct the optimal protocol for verifying Greenberger–Horne–Zeilinger states and for detecting genuine multipartite entanglement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.