A range of substrates made of polystyrene (PS) and poly(methyl methacrylate)-poly(methacrylic acid) copolymer (PMMA-PMAA) containing 98 and 80% PMMA (PA98, PA80) and presenting a homogeneous or a patterned surface were used to study fibronectin adsorption and neuronal cell behavior. Fibronectin adsorption showed weak differences regarding the adsorbed amount (evaluated by XPS), but large differences in adsorbed layer morphology as observed by AFM. A fine granular morphology, with dimensions up to 8 nm height and 50-150 nm width, was observed on top of a thin adsorbed layer in the case of PS, PA98, and of a surface made of nanoscale inclusions of the latter in PS. In contrast, the layer adsorbed on PA80, which carries more ionizable groups, showed a higher roughness on the PA80 zones with differences in height up to 30 nm and characteristic lateral dimensions of 400 nm. On substrates of the former category, the cells formed large clusters, revealing poor interactions with the substrate. On PA80, the cells formed large networks with only a few small clusters. The adsorbed layer roughness, resulting from aggregation of fibronectin upon adsorption and from the substrate surface chemical composition, is responsible for neuronal cell spreading and growth. Its effect is not prevented by the presence of inclusions (< 30% of the surface) responsible for smoother areas of adsorbed fibronectin and for protrusions below 40 nm.
The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell-material interactions to be tailored.
The water-induced surface reorganization of a thin film of a block copolymer [polystyrene-b-poly(ethylene oxide), PS-PEO], was studied by cryogenic X-ray photoelectron spectroscopy (cryo-XPS). Experimental parameters were examined with a view to optimize the analysis. The absence of artifacts due to the low temperature of analysis was checked, and the influence of the procedure used for sample hydration before analysis was investigated. Adequate timing of the different steps of the analysis and temperature program was also established. With this optimized protocol, an important reorganization of the block copolymer was detected, showing more pronounced exposure of the PEO block at the outermost surface in hydrated compared to dry environment. As this type of polymer surface is prone to be used for biomedical applications, an accurate knowledge of the chemical composition of the outermost surface in aqueous environments is crucial. The development of this technique is therefore promising for related systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.