A phase change material (PCM) from a mixture of plant oils was incorporated into electrospun poly(vinyl alcohol) (PVA) nanofibers using an emulsion electrospinning technique. Effects of PCM and PVA content in the emulsions on nanofiber morphology, heat properties, and phase change stability were examined. Higher PCM loadings in the nanofibers led to increased fiber diameter, gouged fiber surfaces, and higher heat enthalpies. The fibers maintained their morphological integrity even if the PCM melted. They showed reliable heat-regulating performance which can undergo at least 100 cycles of phase change. Such PCM fibers may be used for the development of thermoregulating fabrics or in passive heat storage devices.
In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible.
The effect of UV irradiation and micro‐ and nano‐TiO2 as well as titanate nanotubes (TiNT) on the phase morphology and thermal properties of the electrospun PCL composite fibers was investigated. Polycaprolactone (PCL)/TiO2 (micro‐ and nano‐TiO2 as well as titanate nanotubes) composite fibers were prepared by electrospinning a polymer solution. The PCL and PCL/TiO2 composite fibers were exposed to UV light at irradiation times of 5 and 10 days. After UV irradiation the crystallinity of the electrospun PCL/TiNTcomposite fibers increased because of the large specific surface area of TiNT. The thermal stability of the PCL/TiNT electrospun composite fibers increased due to the formation of crosslinking structure after UV irradiation. The SEM analysis suggests that after UV radiation the fibers showed high degree of degradation due to the high number of fibers breakages and fibers surface voids. The results of FTIR spectroscopy confirmed that the TiO2 particles enhance the degradation process because of their photocatalytic activity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43539.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.