Aluminum alloys are key materials in additive manufacturing (AM) technologies thanks to their low density that, coupled with the possibility to create complex geometries of these innovative processes, can be exploited for several applications in aerospace and automotive fields. The AM process of these alloys had to face many challenges because, due to their low laser absorption, high thermal conductivity and reduced powder flowability, they are characterized by poor processability. Nowadays mainly Al-Si alloys are processed, however, in recent years many efforts have been carried out in developing new compositions specifically designed for laser based powder bed AM processes. This paper reviews the state of the art of the aluminum alloys used in the laser powder bed fusion process, together with the microstructural and mechanical characterizations.
Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process.
Additive manufacturing (AM) is one of the processes with the most potential for producing components used in internal combustion engines and features high efficiency due to the possibility of building very complex shapes. Several drawbacks of parts produced using AM are still unresolved, like poor surface quality, the presence of internal defects and anisotropic mechanical behaviour, which all contribute to decreasing the fatigue strength compared with the material produced using conventional processes. The effect of building direction on both the macroscopic mechanical behaviour and the crack propagation mechanism of Ni-base superalloy Inconel718 produced using AM was investigated under the combined effect of low cycle fatigue (LCF) and high temperature. The different crack growth mechanisms investigated using compact tension (CT) specimens, tested at high temperature, showed a significant difference between the two building directions. The LCF fatigue experiments also showed a significant difference in the ε-N curves from the two directions together with a high level of scatter due to the dispersion of the defect size at the fracture origin. The dimensions of the defects (as measured using the ffiffiffiffiffiffiffiffiffi area p parameter) were analysed by means of extreme value statistics and showed a significant difference between the two orientations investigated. The aim of this work is to propose a simplified approach (based on ΔJ eff concepts) to estimate the fatigue life of a component produced using AM that takes into account the material variability due to the combined effect of mechanical anisotropic behaviour and the presence of defects at high-temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.