We build on a recently proposed method for explaining solutions of constraint satisfaction problems. An explanation here is a sequence of simple inference steps, where the simplicity of an inference step is measured by the number and types of constraints and facts used, and where the sequence explains all logical consequences of the problem. We build on these formal foundations and tackle two emerging questions, namely how to generate explanations that are provably optimal (with respect to the given cost metric) and how to generate them efficiently. To answer these questions, we develop 1) an implicit hitting set algorithm for finding optimal unsatisfiable subsets; 2) a method to reduce multiple calls for (optimal) unsatisfiable subsets to a single call that takes constraints on the subset into account, and 3) a method for re-using relevant information over multiple calls to these algorithms. The method is also applicable to other problems that require finding cost-optimal unsatiable subsets. We specifically show that this approach can be used to effectively find sequences of optimal explanation steps for constraint satisfaction problems like logic grid puzzles.
We build on a recently proposed method for explaining solutions of constraint satisfaction problems. An explanation here is a sequence of simple inference steps, where the simplicity of an inference step is measured by the number and types of constraints and facts used, and where the sequence explains all logical consequences of the problem. We build on these formal foundations and tackle two emerging questions, namely how to generate explanations that are provably optimal (with respect to the given cost metric) and how to generate them efficiently. To answer these questions, we develop 1) an implicit hitting set algorithm for finding optimal unsatisfiable subsets; 2) a method to reduce multiple calls for (optimal) unsatisfiable subsets to a single call that takes constraints on the subset into account, and 3) a method for re-using relevant information over multiple calls to these algorithms. The method is also applicable to other problems that require finding cost-optimal unsatiable subsets. We specifically show that this approach can be used to effectively find sequences of optimal explanation steps for constraint satisfaction problems like logic grid puzzles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.