At the moment of writing, in Italy, there is an ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its outbreak is leading to severe global socioeconomic disruptions impacting on all economic sectors from tourism, industry and the tertiary sector, up to the operational and opening of public offices, the closure of schools and the organization of families. Measures adopted by the Italian government to deal with the COVID-19 emergency have had direct effects both on people’s daily lives and on the activity of most industrial and commercial production companies. These changes have been unequivocally reflected also on the Italian electricity system, which has shown unprecedented behavior in terms of both energy consumption and volume—and subsequently, in the observed share of renewable and conventional production technologies. The goal of this study is to show the impact on the power industry of all the restrictions and lockdown of the activities in Italy and to discuss the effects of COVID-19 outbreak on the bulk power system and the entire electricity sector. In particular, the consequences on load profiles, electricity consumption and market prices in Italy, including the environmental aspects, are examined.
The electricity distribution business is experiencing a tremendous and challenging transformation. The use of renewable energy sources is moving generation from the top to the bottom of power systems, where traditionally only loads existed. Active demand, distribution energy-storage devices, and electric vehicles are going to change even more drastically the way the distribution system will be operated. Finally, several stakeholders will share the responsibility for system operation while they often pursue opposite objectives. In contrast to conventional approaches, modern distribution planning algorithms should emulate the new environment to produce expansion and strategic plans for guiding the evolution of system in times of financial restrictions. Probabilistic methods are necessary to capture the intrinsically stochastic behavior of renewable generation, whereas the multiobjective programming is recognized to be the most effective way for planning, transparently and objectively, the system evolution, taking into account\ud
the multiple needs of different stakeholders. Finally, the integration of smart grid operation within planning algorithms is the key point for a proper distribution planning that allows integrating renewable resources and minimizing the cost for new electrical infrastructures
Recent strategic policies and regulations dealing with market liberalization and decarbonization plans, such as the European directives contained in the recent EU Clean Energy for All Europeans Package, are seeking to promote new roles for citizens in the management of the self-produced renewable energy and the development of local energy markets. In this context, this paper aims at presenting the planning actions for the transition of the current passive distribution system of the Municipality of Berchidda (Italy) towards a smart local energy community. This planning study represents the first stage of a development action financed by the Sardinian Region, whose Regional Energetic and Environmental Plan identifies the Municipality of Berchidda as a priority area to focus the experimental actions for innovative smart grids and intelligent energy management. The project, named “Berchidda Energy 4.0”, focuses on increasing the energy efficiency of the community by boosting local renewable generation production and maximizing its self-consumption, also with the support of storage systems, as well as increasing the active involvement of the consumers that will be equipped with a smart home automation system for demand response applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.