At the moment of writing, in Italy, there is an ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its outbreak is leading to severe global socioeconomic disruptions impacting on all economic sectors from tourism, industry and the tertiary sector, up to the operational and opening of public offices, the closure of schools and the organization of families. Measures adopted by the Italian government to deal with the COVID-19 emergency have had direct effects both on people’s daily lives and on the activity of most industrial and commercial production companies. These changes have been unequivocally reflected also on the Italian electricity system, which has shown unprecedented behavior in terms of both energy consumption and volume—and subsequently, in the observed share of renewable and conventional production technologies. The goal of this study is to show the impact on the power industry of all the restrictions and lockdown of the activities in Italy and to discuss the effects of COVID-19 outbreak on the bulk power system and the entire electricity sector. In particular, the consequences on load profiles, electricity consumption and market prices in Italy, including the environmental aspects, are examined.
The newest Distributed Ledger Technology platforms, which delegate the execution of complex tasks in the form of Smart Contracts, make it possible to devise novel local electricity market frameworks, which are performed in a fully automated fashion. This paper proposes a novel fully automated platform for energy and ancillary service markets in distribution networks, able to run in a decentralized fashion, bypassing the need for a physical central authority. The proposed platform, able to perform the role of Virtual Decentralized Market Authority, shows excellent potential applications in the management of local ancillary service markets in local energy communities of various sizes. The proposed Virtual Decentralized Market Authority showed reasonable running costs and comparable technical management capabilities with respect to a physical, centralized managing authority.
This paper suggests an application of blockchain as an energy open data ledger, designed to save and track data regarding the energy footprint of public buildings and public energy communities. The developed platform permits writing energy production and consumption of public buildings using blockchain-enabled smart meters. Once authenticated on the blockchain, this data can be made available to the public domain for techno-economic analyses for either research studies and internal or third parties audits, increasing, in this way, the perceived transparency of the public institutions. A further feature of the platform, starting on the previously disclosed raw data, allows calculating, validating, and sharing sustainability indicators of public buildings and facilities, allowing the tracking of their improvements in sustainability goals. The paper also provides the preliminary results of a field-test experimentation of the proposed platform on a group of public buildings, highlighting the possible benefits of its widespread exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.