The current interest in porous crystalline metal-organic frameworks (MOFs) [1] is largely due to their wide range of compositions and structure types with low framework densities, their tunability, and the possibility of accessible, coordinatively unsaturated metal sites (CUS). The existence of CUS can strongly modify interactions with gases [2] or liquid adsorbates, [3] and is thus of particular importance gas storage and separations.The redox properties of transition-metal-substituted zeolites and mesoporous materials have been extensively studied and used for selective catalysis in liquid-phase oxidation, [4] removal of nitrogen oxides, [5] and photocatalytic reactions.[6]These features are very rare for MOFs containing 3d metals, in particular with respect to the reducibility of the framework metal ions. [7] For this reason, we examine herein both the conditions of generation of iron CUS with mixed valence Fe II
The current interest in porous crystalline metal-organic frameworks (MOFs) [1] is largely due to their wide range of compositions and structure types with low framework densities, their tunability, and the possibility of accessible, coordinatively unsaturated metal sites (CUS). The existence of CUS can strongly modify interactions with gases [2] or liquid adsorbates, [3] and is thus of particular importance gas storage and separations.The redox properties of transition-metal-substituted zeolites and mesoporous materials have been extensively studied and used for selective catalysis in liquid-phase oxidation, [4] removal of nitrogen oxides, [5] and photocatalytic reactions.[6]These features are very rare for MOFs containing 3d metals, in particular with respect to the reducibility of the framework metal ions. [7] For this reason, we examine herein both the conditions of generation of iron CUS with mixed valence Fe II
Purpose: The lack of a timely and reliable measure of response to cancer immunotherapy has confounded understanding of mechanisms of resistance and subsequent therapeutic advancement. We hypothesized that PET imaging of granzyme B using a targeted peptide, GZP, could be utilized for early response assessment across many checkpoint inhibitor combinations, and that GZP uptake could be compared between therapeutic regimens and dosing schedules as an early biomarker of relative efficacy. Experimental Design: Two models, MC38 and CT26, were treated with a series of checkpoint inhibitors. GZP PET imaging was performed to assess tumoral GZP uptake, and tumor volume changes were subsequently monitored to determine response. The average GZP PET uptake and response of each treatment group were correlated to evaluate the utility of GZP PET for comparing therapeutic efficacy. Results: In both tumor models, GZP PET imaging was highly accurate for predicting response, with 93% sensitivity and 94% negative predictive value. Mean tumoral GZP signal intensity of treatment groups linearly correlated with percent response across all therapies and schedules. Moreover, GZP PET correctly predicted that sequential dose scheduling of PD-1 and CTLA-4 targeted therapies demonstrates comparative efficacy to concurrent administration. Conclusions: Granzyme B quantification is a highly sensitive and specific early measure of therapeutic efficacy for checkpoint inhibitor regimens. This work provides evidence that GZP PET imaging may be useful for rapid assessment of therapeutic efficacy in the context of clinical trials for both novel drugs as well as dosing regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.